oy

-A262
AR

APIT/GST/ENS/93M~10

wm
U'l
1.

A PUZZY LOGIC
OPTIMAL CONTROL LAW SCLUTION
TO THE
CMMCA TRACKING PRORLEM

THES1S X T ‘ C
Randy k. Nelson, Major, USAP D

.\ux'r/cs'r/msm:m-m s Epl&%g;gggs

Reproduced From E
Best Available Copy e T T

' 93-0
- Qopoo929v94 sl

Approved for public release; distribution unlimited

98 4 02 161

DO B T e O DS W N L L O PSS A P S S T O S I LD SN PEIN . NP0 S PR T




(o

APIT/GST/ENS/93M-10

A FUIZY LOGIC OPTIMAL CONTROL LAW SOLUTICN
TO THE COMNCA TRACKING PROBLEM

THESIS

Presented to the Faculty of the Schcol of xnginooéing
of the Air Force Institute of Technology
Air University "
In Partial Fulfillment of the
Requirements for the Degree of

mt‘t of 8clience in Operations Research

DITC QUALITY INSPECTED 4 |

Accesion For

NTIS CRA&I g
DTIC TAB
Unannounced 0
Justification

. Randy E. Nel B.S. By
o | y 5. Telson, Distribution

' Major, USAF
Availability Codes

Avall and|or

March, 1993 l
A' i

Approved for public release; digtribution unlimited




THESIS APPROVAL

STUDERT: Major Randy E. Relson CLASS: GST 93-M

THESIS TITLE: A Fuzzy Logic Optimal Control Law Solution to the CMMCA
Tracking Problem

DEFENSE DATE: S MAR 93

COMMITIEE: RAME /DEPARTMERT S1CNATURE

Advisor:

Reader:




Preface

The purpose of this thesis was to develop a set of control
laws, implemented in a simulation, to allow the Cruise Missile Control
Alrcraft (CMMCA) to radar track cruiss mii.iloa and achieve 1008 radar
coverage duxing test flights. The CMMCA was forced to‘po:tom a series
of_ mtcrcoptl on set points recomputed every ten ucondi. Fuzzy lbgic _
toﬁﬁd a vital function in determining whare the set point would be, and
used current and future missile positlion data. ‘ ‘

' This thosis development and completion was only possitle through
tha f.ito‘lon help and motivation provide by my advisor, Col Don
Caughlin. His “"optimal guidance” prevented many a randoa flight path in
my work on this thesis for so many months. I also want to extend my
gratitude to Col Tom schuppo‘ for suggesting this problem, pointing me
towar Col Caughlin, and for his assistance as ny nm. 1 thnnk both
menbuirs of my committse for their superhuman restrzint in not equating
the fuzzy logic used in the thesis to any of my thinkiné Processes.

Thanks to all my fellow GST's and GOR's for their concern in my
progress, and to Capt Scott Goehring for carrying me in oM II wnile I
worked traxitic.lly on‘fini-hing my thesis. o

A very special thanks to my wonderful wife Mary. VSho has been the

rock wherein I've found my sanity during the last six months. Her

strength has re-energized me when I thought I was hopelessly bogged =

down. 8he has given me the ensrgy and motivation to keep going.
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APIT/GST/ENS/93M-10

Abgtract

‘ Puzzy logic is used for sst point determination in a linear
| quadratic track1n§ problem for the U.8. Air Force's C~i8 Cruise Missile
Micsion Control Aircraft (CMMCA). The CMMCA's mission is to radar track
‘cruise missiles (CM) during test flights. Becaouse of thovcomplcxity of
the €M flight profiles, maintaining radar ccverage at all'tim.l is very
difflcult. A simulation was constructed to develop fuzzy logic and
optimal controls to provide 100% radar coverage. Ihc'tuzzy logic was
used in a series of intervals to determine the set point. The se: point
cslculation's fuzzy logic balanced CMMCA maneuvering based on present
and future CM positions. Three differert future times were used: 60, 90
and 120 seconds ahead, and the performance for each time was compared.
The final form cf the fuzszy logic provided varying radai covezrage at
each loock ahead time for a complex CM flight path (CK in zo‘doq:ocs ot
bank) 1850 gaconds long. At 120 seconds look ahead‘tlmo,‘thu cov.rag§
wags 1008. When the same profile was performed with ﬁhﬁ_cn in aond-qxocl
of bank, coverage was dograded, end l0 seconds look ahnld porfozm.d

best.
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A FUZZY LOGIC OPTIMAL SOLUTION TO THE
CMMCA TRACKING PPORLEM

I. Introduction

1.1 PBackground
The U.S. Air Force currently uses a larga number of aircraft

during each cruise missila (CM) teat flight. To reduce the number of
required aircraft, the Air Force introduced the C-18 c(ruise Missile
Kission Control Aircraft (CMMCA). The CMMCA is modified with an
AN/APG~G3 air-to-air radar similar to that in the McDonnell-Douglasg
P-15. The CMMCA is designed to completely replace all otho; aircraft
currently flown in support of each CM test flight. The CMMCA's mission
is to track thc CM for its ontire flight, keepirg the TM within the
radar field uof view as much &s possibie, providing continucus talemetry
reception and deconflicting tne airspace from any iatruders.

' Prior to entering the test range, the CM and CMMCA fly generalliy
straight pathz at medium nltitudel. During this portion cf the flight,
the CMMCA has no difficulty radar tracking the missile. Upon entering
the test range, the CM descends to below 1000 feet and begins a long,
elaborato seriss of maneuvers consisting of turns in all ditoctloh-.
The turns are usually linked by short straight segments; some turns,
however, havo no straight cegments Sotwaen then (see Figure 1).

The missilie flies at a nerrly constant speed of 400 knots
(nautical miles (nm) per hour), while tha CMMCA can vary its speed
betwesn 32O and 480 krots. However, because speed changes result in
greater fuel consumption, the CMMCA should fly as close to a constant
airspeed as possible. The CMMCA has an operational limit of 30 degrees ‘
of Lack, as well as a minjmum/maximum "g" capability of 3/4 to 2 g's.
Excesding any of these limits can put excessive strecgses on the

1
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Pigure 1 Cruise Missile Profiles

airframe. Although the CM is cagable of large bank angles, during test

flights it generally turns at smaller bank angles of 15-20 degrees.

The CMMCA radar field of view is a cone centered on the fuselage
and 60 degrees to either side of center. The minimum range is 5 nm and
meximun range is 15 nm (see Figure 2). The CMMCA attempts to fly a
nominal distance r; in trail of the CM (directly astern) with the
miscile at the 12 o’'clock position. Althcugh the value of ry is not
critical, the initial value used will be a slant range of 10 nm (the
center of the radar envelope). Similarly, the nominal look angle (angle
from thJ nose of the CMMCA to the CM) will be zero deyrees in azimuth.

1.}.1 Possible Maneuvers ot»tbo CMMCA. Sevaeral factors cornspire
to complicate this problem. They include the restricted radar enveiope
of the cﬂucn and the iarge ipacinq of the two vehicles relative to their

turn radii.
As n as the missile begins an extanded turn, the CMMCA is cut

of position and must maneuver to zotutn to position. The CMMCA can

continue to fcllow the same ground track as the missile, can follow the

missile until losing radar contact and then tura blindly toward the
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Pigure 2 CMNCA Radar's Range and Azimuth Limits

missile, or follow by pointing directly at the missile.

Suppose the -i‘uuc mskes a 180 degree turn and the CMMCA flies as
close as possible to the CX flight psth. Radar contact will be lost
after the CHMCA has flown 6.5 nm and reacquired at 13.5 nm, at a range
of 11.2 nm (see Figure 3a). If instead, the CMNCA continues straight
ahsad until nearly losing radar contact, then flies ita best turn
through 180 degrees, radar contact will bd lost after 6.5 na and
reacquired at 11.0 nm, barely outside minimum range (see Pigure 3b).'

Now suppose the CMNCA simply points at the CM while the missile
sakes a 180 degree turn. The distance between the two will decrease and
the angle between their headings will increass until, after the CMNCA
has flown 5.5 nm, it loses radar contact at minimum range. If the CMNCA
then flies its tightezc turn, it will still not reacquire the missile
for another six nm. Instead of being at r,;, the CMMCA will be at
ainisum range, only five miles in trail (see Pigure 4).

The CMNCA can also change its airspeed in an attempt to maintain
radar coverage. Doing so will allow the CMMCA to follow the missile
ground track becauss of its reduced turn radius, but the missile may

3
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still £ly cut of the radar coverage. The major reason for minimising
airspeed changes is because cf the effects on CMMCA fuel consumption.
Another important reason is that it is simpler, faster and more
efficient to increase or decroase CMMCA to CM spacing by turning rather
than by changing airspesed. Eowever, if the CM speeds up or slows down
for an extended period of tims, then the CMMCA will probably need to
change speed also. '
Anothpt complication results if the CMMCA attempts to stand-off
and let the CM maneuver well in front of it, because the CMMCA must
greatly increase its range or turn well away to avoid overflying the
missile. Because ths CMMCA will cover over 16 nm while the CM executes
a single turn of 360 degrees, and the span of hinunm to maximum radar
. runge is only 5 to 15 nm, the CMMCA will almost certainly lose radar
coverage during the missile's maneuvering. Moreover, reaching a stand-
off position and resuming track after the stand-off is coaplete are

4
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Figure 4 Loss of Radar Coverage when CMMCA Points Directly at ;
- Missile as Long as Poosible |

formidable problems that are more seasily avoided by less complicated
CMMCA flight paths. ' '

Due to its recent acquisition, the pilots and crew of the CMMCA
have not yet worked out robust procedures and techniques for solving tho
tracking problem, nor is help available ln the form of autopilot or
other control methods. In fact, pilots still rely on trial and error,
experience, and luck to follow the CM through its convoluted and
elaborate flight profile.

Three attempts have been made so far to solve the CNMCA tracking
problem. Heavner, in his M8 thesis, applied dynamic programming to the
CMMCA, but was only able to work out optimal solutions for a single
ssall turn. The complexity was too great for larger flight paths, and
computer memory was rapidly exhausted (8:36-38).




Garton approached the CMMCA problem from a diffarent directicay he
wrote a Fortran based simulation using gradiant search techniques to
minimize a pénalty function, and an initial straight and level flight
path. The penalty function incorporated variable weights and penalized
deviations of the CM from the center of the CMMCA's radar coverage..
Although performirg well for simple maneuvering, the most complex
maneuver considersd by Garton was a single 270 degree turn with the CX
in only 20 degrees of bank. (6:48-9). ' d

Hachman's thesis wai an extension and refinement of Garton's work.
He modified the penalty function by adjusting the waighting constants,
and tried several diftszent initial CMMCA flight paths. He then used a
gradient sea;rch procedure to produce optimal weightings for the penalty
function. Hachman achieved good results in most cases, although he
still didn't achieve completely feasible CMMCA flight p:bﬂlos (.7:62). .

1.2 Purpose of the Research

CMMCA pilots require the means to continuourly radar track the CM,

Previous research on this subject has provided only pa_rt@aianmu.
These answers apply either to very small portions of the flight profile,
or extend to larger portions but with gaps in the radar coversge. Also,
these earlier results only provided pilots with optimal or aoir opti._nal
CMMCA ground tracks for specific missile profiles. They did not provide
'cont:ol laws that could be used to track n general proﬂl.c. The intent
of this thesis wili be to tomﬁlato basic control laws that will provide
a msans for the CMMCA to track the CM through all phases of its flight,

maintain 1008 radar coverage, and not excead the Oporatiug' limits of the _

1.3 Problem Statement ‘
Cruise Missile (CM) test flights require the CMMCA to maintain
constant radar contact on the CM while not axceeding uzci‘ﬂ: limits.
However, no method exists to provide guidance and control information to
the CMMCA. This thesis will derive optimal control lawe for the CMMCA
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that provide maximum radar coverage and remain within operational

limits.

1.4 Assumptions and Scope
Savera_ assumptions and limitations are required in this thaesis to

narrow tue scope and complexity. They are:
1. The equations of state and motion are based on a flat, non-

rotating earth. ‘

2. Control laws are determined using a continuouu-diacicto model.
CMMCA and CM movements are calculated in discrete tims intervals of one
socond. Within each time interval, the calculations ara carried out in
continuous time based on the system state at the beginning of the
interval. Chajter 2 has a detaiied explanation of this model.

3. The CM is at a constant speea of 400 knot- for the entire
£light. -

4. The CM is in level flight, although its altitude actually
varies somewhat as it follows iand contours.

5. The CMMCA is level at 29,000 feet.

6. No attempt was made to use exact performance figures for the
CMMCA or CM. 1Instead, the analysis uses nominal valuss for CMMCA and CM
performance and limitations, taken from the previous works.

7. The CMMCA is restricted to bank angles less than 30 degrees.

8. The CMMCA's true airspeed (TAS) is held constant at 400 knots.

9. CMMCA and CM are unaffected by winds or other atmospheric
effocts.

10. The CMMCA is always in ccordinated flight (no sideelip).

11. M flight path data is assumed to consist of map coordinates
only. No CM heading or start/stop turn point information is used. All
CH maneuvers have been simplified to straight lines and circular arcs.

12. All COMMCA and missile parameters and states are considered

exact rather than stochastic (i.e., no random errors in observations and

no procass noise).

o
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13. The CMMCA radar field of view s a cone centered on the
fuselage and 60 degrees to either side of center. The minimum :qn§0 is
5 nm and maximum range is 15 nm. A

14. Radar performance is uniform tiiroughout th§ entire region of
coverage. | "

15. Both vehicles are modsled ac a point mass. _

16. PFuture knowledge of the CM fliyht path is perfect. _

All depictions of ground tracks thrcughout this thesis will be two
dimensional for ease of interpretation. However, the throi dim?hstonnl
slant range and radar look angles wsare actually used in all

calculations.
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II. Literature Review

2.1 Introductioh

Alrcraft and aissile guidance arnd control has received a great
deal of attention in the previous half century. The subject covers a
broad range of topics from air-to-air combat t> missile and airplane
Lntcrcépt-. The field of guidance and control ilso extends to .
rendezvous on other aircraft and to tracking p:oblems, where one
aircratt follows another at some specified position. v

The purpose of guidance and control is to generate some type of
rendezvous or intercept with a second, possibly maneuvering, aircraft
(the target). The problem is how to best apply control inpute to the
controlled aircraft (the pursuer). In many cases, the desired outcome
is to bring pursuer and target close enough for the pursuer to employ
its weapons/ordnance. In the case of rendezvous and tracking, however,
target destruction is not normally a goal. For a rendezvous, the
pursuer attempts to arrive at the same position as the target and at the
sane velocity. PFor tracking, when defined for controlling one aircraft
with respect to.cnothor, the pursuer attempts to maintain some
predetermined position relative to the target.

The TMMCA control problem is fundamentally a tracking problem.
Therefcre, for this thesis the scope will be limited to those problems
where the objective is to maintain a position relative to the target.
The term tracking will be synonymous throughout with CMNCA tracking,

i.e. with the CMMCA maintaining a preset position a nominal distance in '
trail of the CM. This definiticn is a very narrow definition of the
normal meaning of tracking, and is adoptad here to prevent having te
invent & new term for the CMMCA tracking problem. ‘

Although thers is a vast amount of material available discussing
missiles intercepting aircraft, the literature is much spsrser for {
rendezvous problems, and nearly silent when it comes to tracking. Any i




! investigation of the CMMCA tracking problem mu¢£ begin with a review of
- ‘ " the litokaturc concerning intercept and tracking problems.

Specifically, this proposal examines dynamic programming, penalty
function mothods, differential game theory, and optimal control theory.'

2.2 Dynamic Programming
. An approach that is sometimes useful for this class of problembi-
e known as dynamic programming (DP). According to winitbn, DP "obtains
solutions by working backward from the end of a problem toward the
beginning, thus breaking up & large unwieldy problem into a series of
smaller, more tractable problems"™ (19:715). Dynaﬁic programming ie an
easily implemented approach, however, it has severe known limitationa: a
linear increase in problem size causes an exponential increass in
complexity. It is kighly computer intensive, even with small problems.
Heavner ran into exactly this problem in his DP implementation of the
CMMCA problem (8:36). Winston states the five basic p:inciploi of DP:
1. The problam can be divided into stages with a decision required at

oach stage. : :
2. Bach stage has a number of states associated with it. :

'_r/ 3. Bach decision transforms the current state into the next.
4. The optimal decision for each stage must not depend on previously ‘ ’j

reached states or previously choassn decisions.
S. There is somo cost function to be minimizod/maximiz-d that dopond-

— only on the states. (19:722)

The term stage in most cases refers to the diocr.tt tinl intervals
into which the problem is broken. Tho state is the full set of
information needed at each stage to make the correct dqclliou. Th..
state is often the position and velocity of each airc:a!t, houiv.r, the

e ]+ R e v By S oo S i

choice of states is arbitrary since there is an infinite number of

et e

states that lead to the same result (9:53). In practice, the states are

chosen to make the problem .anl.r.
DP is especially applicable to the diocrotc tin. qnnd:atic

regulator problem. For thiws prqbl.n, the linear system is given by the |

state equation: .
X(tyq) = Ax(ty) + Bu(t,),  x(ty) = x5 L o
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where A and B aro matrices, x(tk) is the state voctor at time t,, u(ty)
is the control at time t,, ‘and xo i the initial condition. The problom

is to find u(t;) that minimizes the cost J, where

¥-1
J = x(t,) Pex(t,) + E [xT(t)Qx(ty)] +x 2 us(t,)

Here a superscript "T" represents a transpose operation, and P,, Q and r
are ralative weightings of the cost terms. P, ponalizco doviation at
the final time t = t,, Q penalizes deviation from the desired state
during the time interval [t,,t,] and r is the control cost (9:243-4).

Heavner, in his MS thesis, applied DP to the CMMCA by using time
intervals of 6 seconds and a four-state implementation consisting of the
CMMCA's position and velocity. He used CMMCA bank angle and thrust as
control variables (the inputs to the system). He then related the state
of the CMMCA at the next time ooriod to its state at the current time
period plus the change caused by the controls (8:18);

Heavner minimized a cost functional based on CM deviations from
the center of the CMMCA's radar coverage. Instead of a quadratic cost,

kis cost had the form'

Je f:":.[x('t) ,U(t)1dt + O[X(t,),t,] (1)

where L penalized the sum of range and azimuth doviatiooo during the
flight, and O penalized missile deviations during the end game
(8319,72). Heavner discretized J by convorting the integral to a
summation and explored several diffo:ong time steps.

A Heavner's results were limited to CM maneuvers of a single turn of
90 degrees or less. Computer memory requirements increased so rapidly
that the solution soon became impossible, a problem noted by Winston
(19:754). Heavner further reported that the resuits were highly
depundent on the time interval used, and suggests that his penalty
function could be significantly improved (8:37-8). ’
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2.3 Penalty Function Method (Optimization)
Garton applied a penalty function tc the CMMCA tracking problem.

That is, he used the form of equation 1, but with a significantly more

sophisticated penalty function. Instead of simply lu:xininq the range and

agimuth deviations, as Heavner did, Garton used

»
J[v'.] - lzowt‘ JI

- ) ax,
Ty = [xlty) -r,)? + W, [0(t,) -~ 6,)° + W, (v,pu.,) + W, (-;é)
]

where N is the number of time intervals, r(t) and 8(t) are the range and
azimuth from the CMMCA to the CM .(ro and 6, are thair nominal values), V
and a are the 'volocity and bank angle o‘t the CMMCA (U, is the nominal
velocity), W, through W,, u, Ky, and K, are weights to be determined, and
the Wt; are quadrature integratiun w.iglixtl (6:19~23).

Garton calculated J based on an u;u-.ui (quessead) cmlca flight
path. His starting flight path was tor}‘ the CMMCA to 'ﬂjr itraiqht and
level. BHe thcn used a gradient search ‘brocadure to reduce J. To
compute the gradient of J, he first for:?nod a maneuver vector consisting
of the CMMCA speed and bank angle at oa"h time interval (a 2N x 1 »
vector). He then calculated the gradient from the partial derivatives
of J with r.lpoct to spsad and bank. B‘o sampled three J values along
this gradient and fit a parabola to tho points, then tound the minimum
of this parabola. This became his next maneuver vector, and the process
repeated until J converged to a minimum (6:24~33). o

cu:ton saccassfully applied tlhis method for the CM :tuight and
level, and for the CM in 20 degrees of bank for a 90 degree turn. mn
applied to & CN turn of 270 degrees, however, the algorithm exceeded the
CM)CA's bank angle rastriction (6:43-49). - » ;

Hachman started with Garton's algorithm and lcalod the penalty
function components so that any deviation of the same ugnitudc produced
the same penalty (7:28-30). He usad two initial CMMCA flight paths:

12




1) straight and lovael, tha same as Garto., and 2) the CMMCA flying

exactly the same fiight path as the CM at the desired distance bohind
the missile. Hachman alsoc set all parameters to Garton's computed
values, and set the woighting factors to ocne. Hachman used Zour CM

srofiles:

1. a 189 degree turn.

2. & 277 deqgree turn.

3. & 270 degree turn to the right, followed immediately by a 270
dogree turn to the lefrc.

4. an actual test flight fragment with sover straight segments
nd six turns of between 45 and 200 degrees (see Figure 5) (7:30-35).

@ | ol
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FPigure 5 The Four CM Profiles Used by Hachman (5:31-35)
Hachman's results are shown \n Table 1. Profiles one and two met
all CMMCA constraints and achieved 1008 radar coverage. Profiles three
and four both showed significant degradation in radar coverage when the
initial CMMCA ground track was straight and level. When the CMMCA's
initial path was in trail of the Ci, the results were nearly optimal.
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Flight Path | Initial Path cimdge Ty i

Straight 199 100

! Trailing 100 100

, Straight 100 100
Tralling - 100 160
Straight , 74.18 94.56

3 Trailing 100 100

. Straight 37.41 100
Trailing 64.68 97.90

A W TR S S VPR

Hachman then implemented a 2% fu11 factorial design on p:ofj.lo
three. He used the three weighting factors and th CMMCA to .m nominal
range r, as his design parameters in an attempt to maximize the percent
radar coverage. His intent was to produce a set of optimal weights and
an optimal nominal range.

The factorial design prouceedaed by selaecting 2 design points, each
with a different combinaticn of weights and r,. A lincar regression was
performed on tho results; producing a first order response :ér.fcco. The
gradient of this surface was taken at its bast (but still suboptimal
po:l.nt).’ An examination of the responaes along the gradient f£rom this
point was used to find a local maximum. 'fhln local mim was then
used as the center for another set of design points. v

. This search procedure was iterated through two gradient peuchn.
Hachman discovered on the second gradient gearch that he was t.i.nding no
improvement in radar coverage (the response), and therefore he stopped.
He selected as optimal that set of weights that had given him the best
reusponse. (7:138-40,49-55). , ‘

This point of the gradient search on profile ﬁnxn was to provide
optimal weights that could then be applied to proiile fou:.‘ This did,

" if fact, allow Hachman to achieve good results for CM profile four. The

14
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radar coverage improved from 63% to 100% and CMMCA limits ware

maintained at 98%.

Hachman tried two other m.thodo.tq improve profile four's results. .
Be first tried couble precision variablo:; which resulted in an
Lﬁprovnmont of about 1% in CMMCA limits with no loss of radar coverage.
An extreme drawback of this method was that o;ch run required nearly

" seven hours of CPU tims on a VAX model 6420 computer.

Hachman reported his best success came from btaaklnq the profile
into two pleces, roughly equal in length. In this case, no change
occurred from the CMMCA in a tralling initial position, but the straight
and level initial positicn improved greatly (see Table 2) (7:56-9).

Table 2 Hachman's Results for CM Profile Pour UsIny Three Different
Approaches (5:56,57,59)

AREETEY RN RSN N
Method Initial Path gom‘;. o \ime in

Prom vrofile 3 Trailing 100 97.9
Double Precision Straijht 46.15%5 100

Variables Trailing 100 98.25
splitting Flight |  straigit 97.55 : 100

Path into ~ :
Two Segments Trailing 100 97.67

]

Hachman found several major difficulties with his method. The
axount of CPU time increased rapidly as CM profiles grew longer. '
Profile four took approximately three hours for one run (of 150
iterations). When split into two pieces, each piece still took 50'
minutes of CPU time (7:59).

Another major prcblem Hachman fouad was difficulty in achieving
convergence of the gradient search technique to minimisze the penalty
function (7165). This was part of the cause of the significent
1nc:;l-ol in computer time required to f£ind the optimal trajectory.
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In summary, Hachman's method requires a starting CMMCA flight

path, which is rurrently produced by guesswork. The number of
iterations to produce a minimum penaltybfunction is large, and time
required appears to increase exponentially wita CM flight path length.
Worst of all, the ocutput from this method is simply a ground track for
the CMMCA to follow. Thevs is no way to implement this form of the

solution by autopilot or to use the actual aircraft data such as'rango

and bearing to the missile.

2.4 Differential Game Theory

Two player, zoro-sum games are those in which two competitors are
engaged in a corntest that defines a winner and a loser. Games in which ‘
the movements of the players can be described by differential eqrations
are known as differential gﬁmol. Alr combat invoive- two advoraniol
maneuvering with the offensive adversary (pursuer) attompﬁinq to shoot
down the defender (target;. 'Tha arera of air-to-air engagements between
pursuer and target is an example of a two player, zoro-nﬁn differential
gane. : | |

Bryson and Ho discuss linear-quadratic pursuit-evasion games k
(1:1282-289). The mathematical basis of all differential games is th‘
Maximum Principle. Pursuer’'s and evader's equations of motion are:

X, = Tpxp + Gu, Xp(tg) given
t. = Px, + GV, - xg(tgy) given
where the subscripts p and e represent pursuer and evader, u and v'rxo
the pursuer's and evader's control inputs, and F and G are matrices
relating tha change of state to the current state and controls. \
~ Menon considered the problem of two aircraft, cne strictly '

offensive and the other strictly defensive (13:127-28). The goal of the
pursuer is to drive the distance between them to zero, uhiio the .
defendexr seeks to maximize the distance. With U and W the pursuer‘'s and
dofender's pseudo-contrcl inputs, zocpogtlvely, g the i.lntivo position
between pursuer and defender, S a positive semidefinite matrix |
penalising separation at the final time t,, and A and B positive
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definite matrices repressnting acceleration capabilities of the pursuer
and defender, respectively, then the cost functional is
J . m%“ max (-;-z’(t,)s, Z(t,) + f:‘ [UTAU - WTBW]dt])
(13329). The pursusr attempts to minimize the cost of maneuvering while
driving the range to zero; conversely, the target attempts to minimize
the cost of maneuvering while trying to ir-rezse the range as much as
possible. '
U and W are pssudo-controls because thay are obtained by

. transforming the actual uircraft controls, (i.e., throttles, “g¢'s," and
bank) into their componsnts in inertial 3-spacs. Thll‘lllo has the
effect of transtforming the nonliniar vehicle dynamics into a linear,
ti-.—invaziant form. MNenon's model is formulated in terms of the
inertial position state variables and their variocus derivatives; the
solution obtained is in a feedback form. After forming the Hamiltonian,
Nenon uses the variational calculus to derive a clossd form solution of
eﬁo control laws. The inverse trnnlformation‘rouultl in a non-linear
!;odbnck solution in the original coordinates (13:27-29).

| Menon reports results for two scenarios. Both involve fighter
t;po aircraft of nearly equal capabilities. 1In the first, the evader is
.+coo-|tu11y intercepted in 14.5 seconds. In the second scenario, the

pﬁ:tuor falls to intercept and the evader escapes (13:30-2).
Inclusion of a weapon's range makes an air-combat model even more

realistic, and can be accomplished by assuming a spherical weapons
envelope of radius R,. As soon as the distance between the players
decreases to R, the problem is solved and the target is deemad
destroyed. _

Menon & Duke devised an even more realistic weapons envclope that
took the form of an arbitrary 3-dimensional shaps. They started with
Menon's model described above and then expanded it by inclusicn of an
arbitrary weapons envelops. Taey cite sinple examples such as a cone of
limited size directly forward of the pursuer, and a prolate spheroid
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{footbsll shape) centered at the puriuer'n center of mass (14:449-450).
The cong--hapﬁd weapons envelope is very similar to the mcw,.; radar
coverage. '

An additional factor in intercept problems is the specification of
the final time — the time ut which the intercept occurs. Final time is
a critical value; variations caa significantly change the outcome of the
Lntox;eopt or rendegvous. Menon and Duke wers able to leave final time
unspecified, then derive it from the equations of motion and from energy
conservation laws (14:1453). , |

As in Menon's earlier paper, variational calculus is applied to
the Bmiltoﬁian equation to derive a closed form solution to the control
laws. The same transformation and inverge ttanitomtion are used to go
from the nonlinear dynamics to a linear tlmo-invq:imt form, then back '
to the original coordinates (14:451-3). ;

Menon and Duke report the result ﬁom one ongnqmnf le-nu:io.’ As
in Menon's papoé, both aircraft are fiqhtor types of nearly equal
capabilities except the pursuer's top speed is almost twice the
evader's. The evader bagins 2 km in front of and 5 km to the right of
the pursuer, with the evader's heading 90 degrees awey !roﬁ the pursuer.
The evader begins a turn away and tries to out run the pursuer. The
pursuer beging an immediate turn and ccmpletes the intercept after 51
ucpndn. The effect of the weapon's invalopo éan be seen in the
utiéudo acceleration history of the pursuer, where it causes several
large oscillations (14:1454-5). ‘ L '

Differential game theory is a promising avenue of approach; its
assumptions are reascnable and the use of a weapons envelope is
remarkably similar to that of the radar environment in which the CMMCA
operates. The major drawback to using game thsory for the CMMCA
tracking problem is exactly its most basic feature. The evader is
saneuvering in reaction to the pursuer, attempting to maximize rol.tiﬁ
range, yst in the QMNCA problem, the CX follows a preset course.
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2.5 Optimal Control Theory

The theory of optimal control has bood developed to derive a set
of input controls to drive & dynamic system in some optimal fashion,
that is, in a way that minimizes a cost. In the linear quadratic
gaussian formulation, the cost is based on a performance index that is
defined as deviations from some desired ltito, and the amount of controi
Ainput provided to the system. The resu’ting optimal control law is
easily iuwpliemented on néarly any computer and the results are rapidly
avikilable. Purther, for a linear system, most of the computactions can
be done off-line, that 1-,‘prior to actually applying them to the system
(10:82).

In general, a system (plant) can be described by the non-linear
dynamicezl equation '

| k(t) = £(x,u,t)
where x(t) ia nn'n‘dimonlion#l state vector and u is an m dimensional

control anht vector. Associated with the system is a perfcrmance or

cost index

T = ®(x(t,),t,) + f: L(x(t),u(t),t)dt

over the time interval [to,t,]; The cost ®(x(t,),t,) depends on the
final state and final time, while the weighting function L(x,u,t)
depends on the state and input at intermediate times. Optimal control
is the problem of finding "the input u'(t) on the time interval [t,,ts)
that drives the plant along a trajectory xf(t) such that the cost |
function” is minimized (10:151).

In many cases, the plant can be adequately expressed wiﬁh a linear

time-varylag system of oqunglona

£ = A(t)x(t) + B(t)u(t) | Q@)

where x « 2" and v ¢ B,
19
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Associated with the system is a quadratic performance index

T =3 xT(e)S(Ex(E,) + 3 j:' [xTQ(t)x + uf R(t)uldt -~ (3)

over the time interval [t, t,]. In the most general formulation,
“weighting matrices §(t,) and Q(t) are symmetric and poti.ti#o
semidefinite, and R(t) is symmatric and positive definite" (10“3180).
This aystem is an example of a linear-quadratic ‘(I.d) regulator.
*A regulator is designed to keep a stationary .yitu within an
acceptable deviation from a reference condition uiing vacqoptnbl. amounte
of control® (1:1148). Another type of system is the terminal controller,
which is "designed té bring a system close to desired conditions at '
terminal time (which may or may not be specified) while oihibitinq

acceptable behavior on the way" (1:148).

Using state and costate equations and boundary conditions, the
optimal control is expressible in terms of A, B, and R“. However, o'
does not depend on the state x(t), making this an open loop controller.

If some perturbation moves the system off the predicted course, the

controller will not compensate. Hence a closed loop controller that can

react to system perturbations is preferred.

To develop a closed loop, feedback control 'truét;ﬁr;, the method
of Lagrange multipliers is often used. S8tart by adjoj.ninq‘ the state
equation (2) to the control cost (3) using a (voétor) Lagrange

. multiplier A(t) ¢ B (91226-7), .

Js= %x’Sx * f: (%x’Qx#%u'Ru+1"(AxfBu~*i]dt

1.4 . c’,-’
-3x s:z*ft. (R-A%x}dt
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where the Bamiltonian H is defined as
H= % [(x*Qx+uT™Ru) + AT(Ax + Bu)

Using results from the calculus of variations, the state and costate

equations are (10:180-181,189-1351)

% -.g; = Ax + Bu

—-an- T
X P Qx +A'u

and the stationarity condition is

=98 T
0 e Ru +B'A (4)

8olving equation (4) for u(t),

u(t) = -R18TA(t))
Further, we ﬁult have

A(ty) = S(t,)x(t,)

Now assume this same relation between x(t,) and l(t,) holds for

all t € [t,,t,]:

A(t) = -8(t) x(t)
If there exists such a matrix 8(t), then this assumption will have been
valid. Difforontiata the costats equation and substitute the state and
costate squations to get (dropping the explicit time dependance
notation)

\

-3x = (ATS \. SA - SBR*!BTS + Q)x

and since this must be true torkall t

’\
-4 = ATS + SA - 8BR'BTS + Q, tst,
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‘control is

This is the matrix Riccati'oquatioa.ble the Riccati equation has
a solution, then the assumption was valid and therefore the op:imal

u'(t) = -R"BTsx"(t)

According to Kailath, the solution to the Riccati equation exists and is
unique if the system is both controllable and cbservable (9:231).
Dotinln§ the Kalman gain as
' . K(t) = R 18"s(¢)

the optimal control is
u'(t) = =K(t)-x"(t)

‘The Riccati equation is solved backwards in time for 8(t). Note that

this can ba done off-line, since tne state x(t) does not appewr in the
equation. Then tbks Kalman gain can be computed and stored, to be
applied later (10:1190). '

Lewis discusses lovarai other results: _
1, BRven if A, B, Q, and R are time~invariant, X(t) still varies with

time.
2. The plant Aynamics are
_ % = (A - BX)x ‘
Yor any initial condition x(t;), this will yield tﬁﬁ optimal state

trajectory x"(t). _ o
2. If the optimal control is used on [t ,t,], then the performance

-e

index is
| 3(e) = daTit) By x(t)

The advantage of this is tha£ cost can be computod in advance. 1If the
cost is too high, the weighting satrices Q, R, or h(t;) can be changed
(10:191). o |
Computsrs are, of coursne, used to solve the above cQultLoni, and
the digital implementation lends itself to sampled data rather than
continuous solutions. In the discrete version, the optimal control is a

'ptoccwimo constant function, that is, changed oaly at the beginning of

each discrete time stop.' The continuous equations for a linear time

N
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invariant plant (such as the CMMCA) are easily made discrete

. (12:42,43;10:63~65). The interval from ty to t, is divided into N

periods of length T (the sampling period). The plant equation‘becomon

X(Eyp) = Sltyqety) X(Ly) + T(ty,q et ) ulty) .
where & and T, the sampled plant and control matrices, are given by

. ‘tgo;: tk) = gh?

L(ty.;, ty) .f:“o(t,.,,t)amdg‘

This is the continuous-discrote control law formulation. The

optimal controlvu'k is discreta: constant during each time interval and
switched to a new value only between steps. u'k is computed from the
above eguations for the optimal gain, hui ising the sampled matrices in
place of the system matrices. The state x'(t) is contlnuoﬁg and is

found by_lumming over all complete time inte —als, und integrating

during the current one:

x(t) = eMEtx(t,) + L ‘ertpdsu,, ty St <ty
! 3 .

2.6 Puszzy Logic and Puzzy Control Systems

2.6.1 Introduction. Generally, the outputiroopon-o to a set of
inputs is derived from one or more mathematical equations, from a set of
rules (expert system or Boolean logic), or from a transfer function.
Many times, however, the resulting algorithms are so complex as to be
completely or essentially useless. Applications requiring real time
solutions may not have a solution calculable in real time (e.g. convex
optimization problems). To arrive at mathematically tractable, real
time solutions, it is common to make simplifying assumptions. Doing so,
however, often meana that the resulting errors nic excessive, r.ndorinﬁ
the solution unusable. |

Tuzzy logic is a way around tholo'dlttlcultins, and is olten
vastly simpler and much more intuitive. Consider the fuzzy rule: "If
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breke temperature is Warm AND speed is Mot Very Fast, then brake

pressure is Slightly Decreased"” in a car's anti-lock brake system vs the

conventional formulaticn: "if ( 200 is less than brake temperature is
1.5. than 280) AND (speed is less than 45 RPM), then b:ako pressure is
190" (5:58). 1In this case, the degreas of warm and speed will determine
the amount of brake pressure. In essence, this one fuszzy logic rule
supplants many rules in a conventional rule-bzsed -y-tah.

According to Chiu et u.‘, fuzzy logic control has 'iﬁccllont ‘
:obnitne_u characteristics, perhaps bacause the inherent imprecision, or
generality ... is well suited to imprecise systems whoze behavior is
known only in the htg." (3:43). vCox ltknﬁl a furzy model to a pn:allei
processor: "All the rules that have any truth in their premises will
fire and contribute to the cutput fuz;y set," i.e, to the cont:dl
variables (5:60). . ,

The important and distinguishing feature of a fuzgy rule system is
its reliance on human experience and intuition. A fuzzy coﬁt:ol
algorithm “"can be regarded as a set of houriaﬁlé decision hlﬂl or
‘rules of thumb'® (11:65). A- guidelines for when to use fuzzy logic,

Cox suggests: "when ocne or more control variables are continuous; when a

mathematical model of the process does not exist, or exists but is too
complex to be evaluated [rapidly or takes up too much chip memory) ceer
when high ambient noise levels must be dealt with, ...; and perhape
above all, when an expert is available who can specify the :ulu
underlying the svstem beshavior and the furey sets that represent the
characteristics of each variable" (5:58). - ‘
2.3.2 Pussy s.il. The concept of a fuzzy set is thtal ﬁo
fussy logic. A fuzzy set is any set in which elements may have h-b
between membership in that set. Unlike normal sets where an element is
either in or not in a set, an element may belong only partially to a

fussy set. The degree of set rembarship is a real number from O to 1

with O denoting no membership and 1 representing full ut nembership.
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With the notion of fuzzy sets in .and, the next step is to

consider each variablg. Li and Lau's universe of discourse is the set

of all possible values a variable can take (i.e. its domain). Having
specified the domain, it is generally a simple matter to divide the

domain into subsets based on experience and tha current situation. For

example, temperaturs may be readily classified as Cool, Tepid, Warm,
etc. and the actual tcmbornturcl corresponding to Cool will vary

depending on whether the system under consideration is a fusion reactor

core or & liquid helium containment vessel.

Knowing the universe of discoures, a mapping from analog variable
values to set membership values is needed. The exact shape of tﬁe
messbership function is unimportant; any arbitrary choice ie acceptable,
although simplicity usually drives the choice. PFigure 6 lhéwl two
commonly used shapes: trapezoidal and trianguiar. Although a
trapezoidal shape is slightly ﬁozo complicated, it captures the fact
that a variable, over a restricted range, is often fully in one set and

not in any others.

Set
Membership

Level

A Trapezoldal

1 +

Trapezoidal Tranguler
+ . — t —>
100 , 300
Tempersture (degress C)

Pigure 6 Two Common Shapes for Fugzy Membership Punctions
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» Let u,(x) represent the degree that element "x" belongs to set A
(the set homberlhip function). Then continuiag the brake example frbm
above, a temperature of 100 may belong to the sets Ccol, Tepid, and Warm
with

Wt (100) = .3,
Urep1a(100) = .6,

Ve (100) = .1, ‘
This ltop'of assigning set membership is fusszification. Note the

overlap of the three sets. This is a key foaturi of fuzzy logic and
shows where the parallel processing paradigm arises, since a variable is
often a member of multiple sets. Also, uaing descriptive names for sets
instead of nested conditional statemsnts (a series of “if ... then"
constructs) allows a more intuitive understanding of the decision logic
being derived. v ‘
The mapping from analog variable value to set membership could 50
accomplished directly. However, to make the mapping to set m.mboryhlp
level generic, each variable is first mapped into the same interval,
..g.,‘f-s,SJ, and linguistic sets are then defined. Linguistic sets gr..
merely stindard name replacements for variabls Jpecific set names such
as Cool or Short. A generalized fuszification of any variable can be
made with the linguistic sets Large Positive (LP),'Small Positive (8P),
Sero (IR), Small Negative (SN), and Large Negativﬁ (I.l() (see Pigure 7).
Bot, for example, might correspond to the 1Ln§u1-tic sst LP. This
classification can be expanded further with additionnl sets such as
Medium Fositive or Very Negative, or reduced by climinntinq; for
examples, all Negative sets (11:65). This scaled valus is then used in a
lock-up table for each linguistic set (see Table 3). ’
Cox provides some rules of thumb for defining linguistic sets:
1. The number of sets should generally be an odd number bcemn five
and nine. \ _ : o _
2. Each set should overlap with its neighbors, since this overlap is
what gives a fuszzy controller ita smooth and stable surface.
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Set
Membership
Level

LN SN ZR SP P

1 XX XX
-ttt sttt
4 4 4 @ a4 o0 1 2 8 s s

Scaled Anslog Velue

Pigure 7 PFuzzification of an Analog Value into Five Puzzy Sets
Table 3 Mbornhipuattix Table .

 Linguistic Quantized Lovels
Sets -5 -4 -3 -2 -1 0 1 2 3 4 5

LP 6 0 0 0 6 0 O0 .0 .5 1 1

8p 0O o o0 o0 o o0 .5 I 0 0

IR o 0 0 0 .5 1 .5 0 0 0 0

s o o .5 1 .5 0 0 O0 O O 0

LN 1 1 .5 0 0 0 © O0 0 O 0

3. The overlap should be 10 to 50 percent of the neighboring space, but
the sun of ths membership values at any point must not exceed one.
4. The density of the linguistic sets lhpuld be hlgnnt near f_.ho
ogtiral point. (5:61). ) A

2.6.3 Fuzzy Logic. Once linguistic sets are decided on for all

input and output variables, a full set of logic rules is needad to

relate the system inputs to the outputs. The rules are devised using
the linguistic sets and the three cperators AND, OR, &nd KOT. While a
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large numbexr of rules may be required, the rules will be Zar simpler and

fewer in number than in the corresponding non-furzy formulation.

ruzky set logic is based on the following definitions of the basic

logic operations:
1. The union of set A and oai B (logical OR) is

u(A OR B) = max[u,(x),ug(x)]
2. The interse~tion of set A and set B (logical AND) is

(A AND B) = minu,(x),uy(x)] |
3. The cémplmnt of set A (logical NOT) is

U(NOT A} = 1 - u,(x) |

2.6.4 Pussy Control. With the linguistic sets defined for the
input and output variables of a given system, and with the necessary
logic rulee formulated to define specific anut-output :alationshipl,
tu:sy logic next derives thn cvurill systan output by combining the
output of each rule. As an example, suppcee the following three logic
rules are in effect: - o ‘
1. If Input 1 is ZR AND Input 2 is LN, then Output is 8P,
2. If Input 1 is 8P AND Input 2 is 8N, then Output is IR,

3. If Input 1 is LN AND Input 2 is SN, then Output is SN.

S

8uppo-o>aluo that the cu::enf scaled value of Input 1 is 0.8 and the
value of input 2 is =2.5. This is shown in Pigure 8. '

Rule 1 produces 0.7 from input 1 and 0.2 from input 2.
Application of the rule's logical AND then produces minf0.7,0.2] = 0.2,
which iayucod to truncate the output SP trapezoid. Rule 2 produces o.i
which truncatzs tle SR sutput at the 0.3 level. Rule 3 pro#ﬁcol 0.0,
leading to nn ccrtributsd output. ' v i ' )

Once the ou'puts for each rule are deternined, they must be
combined into a single cutput value. Tha combination 61 Lndlvidual,‘
outputs is commonly made from one of two basic nnthdds:»thn composite
maximum or the composita moment (or eoniroid). The choice of which

method to use is somewhat arbitra:y, but is often based on ninplicity of

' anlmnuuon.
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FPigure 8 Puzzy Logic Applied to Three Rules

The composite maximum is the simplest method, and consists of
simply choosing that output having the maximum value. Because this
ignores the zresults of all other firing logic rules, a ilgnificant
amount of information can be lost and the value of the fuzgy approach is
reducad. As Figure 9 shows, the centroid method provides an output
value of 0.0, which i1s just the midpoint of the maximum output (ZR from ;
Rule 2) and ignores the ocutput of Rule 1 (8P), which is nearly as large
as the chosen outjut.

The composite moment method is scmewhat more complicated, but its
advantage lies in the fact that each firiag ruls contributes to the
output. The various outputs at each point are combined by a logical OR
oporntion._ This has the wffect of taking the maximum value of all :
outputs. The centroid of the combined output is then the final value of i
the output. In essencs, each output is weighted by the value of its
tonpoctlv. rule. Aa shown in Figure 9, the centroid method provides an
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Pigure 9 How the Output of Fuzzy Rules are Cm\bi.ncd into a Single
Output Value

output value of 0.8.
The certroid method is often preferred racause it uces all the

available intomation, producing a "result that is unlitive to all the
_rules, ... hence the results tend to move smoothly across the control
surface"® (5:161)., The result of either the composite maximum or the
conpon.tﬁo moment method is a (scaled) value of the output. This must
then be converted to an absolute (analog) value by the appropriate
tran-fomtionf ,

While the fuzzy logic procedures can be implemented directly and
" computed each time they are needed, Li and Lau (11:67) recommend using a
look-up table for speed and simplicity. The table is entared with the
scaled input values and pvcvides the corresponding scalsd vaiu. of the
output variable (uob'rablo 4).

As an example, suppose brake temperature and speed are the inputs
ind brake pressure is the cutput. Given a temperature of 255 °C and a
speed of 247 RPM, these variables lcui, for example, to 1.3 and 3;7,

sctively. BEntering Table 4 with these values for inputs 1 and 2

results in an output valu- of -3 7 (-calod), which is then transfo:ud

to its final value (e.g. 7.9 p-i.).
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Table ¢ Sample Look-Up Table (Li:68)

Input Input 2

1 -5 -4 -3 -2 -1 0 1 2 3 4 5
-3 s 5 4 4 3 3 3 2 1

-4 $ 5 4 4 3 3 2 1 1 -1 =
-3 3 s 4 3 2 2 i o0 0 -2 =2
-2 s 4 3 3 2 1 1 0 -1 -3 -3
-1 | 4 4 3 2 1 1 0 -1 -2 =3 -3
(3 4 3 3 2 1 0 -1 =2 =3 -3 -4
1 3 3 2 1 0 =1 =1 =2 -3 -4 -4
2 | 3 3 1 0 0 -1 2 <3 -3 -4 =5
3 |1 1 a1 -1 -1 .2 -3 <-4 -4 -5 =5
4 1 1 =1 =1 1 =2 =3 =4 <=4 <5 <8
5 1 0 -1 =2 =2 =2 =3 -4 <=5 =8| =g

Fussy controllers have a problem as the current state of the

system approaches the desired state and the control lpptonchotzzcro.

The fuzzy controller may then not provide cptimal control, butlin-tcad
result in overshoots and oscillations about the desired ponltion due to
overcontrol. The nolution to this problem is eo have two dlttctont
fussgy logic decision tables, one for ccarse control and nnothoﬂ for fine
control (11168).

2.6.5 Resmults of Puzsy COngrollcrl. Li and Lau compnro'fus:y
control algorithma to two other types of slgorithms for i sorvomotor
system controlling the velocity and angular position of its shaft. The
conventional controllers are a proportional-integral (PI) controller and
a Modsl Reference Adaptive Control (MRAC) controller. The fuzzy system
used coarse and fine controllers;) it may sometimes be necessary to add a
thizrd decision table tc dynamically change the gain to prevent
instability probieas (11370().

The fuszzy controller outperformed the PI controller and is as good
as the KRAC controller. It has ons-half the settling time of the MRAC

and two-fifths that of the PI conttollog. i and Lau caution not to
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expect an cptimal response except for .certain ranges of the inputs due’
to the tuning and scaling that was done to the controller. Expanding
the operating region means adjusting the parameters. .

Importantly, fuzzy theory is not yet mature enough to provide.firm
guidance in how to shape cr by how much to overlap the various
membership functions. Too much overlap will result in too many rules
simultanecusly being applied, while too little overlap will make the
derivation of the look-up tabi- difficult (11:71). ‘

Chiu et al. report on the use of fuzzy control logic for
controlling the roll rate and load allcvlation control of tﬁc Advanced
Technology Wing (ATW). The system enforced toriion mqmcht bounds
without any liqnificint degradation in roll rate performance. They then
varied the plant parameters by 50% to reduce ltlblllﬁy, resulting in
-uall.ovnxohooto in roll rate and slightly increased torsion moment
oscillations. “"Nevertheless, the control system ltili maintained good,
stable roll response and stringent enforcement of the tdtllon noment
bounds® (3:147). '

They further observe that the simple set of rules derived from
quniitatlv- considerations provided a highly robust control system.
Some of the bounds are readily derived from phylical constraints, while
others are initially estimated and then adjusted in an iterative process
ﬁo arrive at the desired response (3:47).'

Their final statement is an sxcellent reminder of thc,potiﬁtial
dangers of fuzzy logic: “the greatest drawback of fuzey control is the
lack of rigorous stablility and robustness nnalynti tochniqu@n. ese The
nonlinear nature of fuzzy control affords enhanced portormauco’ltrth‘

expense of analytic tractability” (3:47).

2.7 Conclusion
There are several very valid methods that can be applied toﬂtho

CMMCA tracking problem. Dynamic programming can, in theory, solve any
control problem, but the implementation is flawed by the tremendous
amount of computer memory required for any but the simplest problem.
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The penalty function msethod of Garton and Hachman achieved good results,
but used vast amounts of computer CPU time and did nct provide any means
for implementing them on aircraft autopilots.

Differential game theory, especlally with the introduction of a
weapons envelope similar to the CMMCA's radar cons, seems to provide an
alternative. Unlike differential game theory, where the evader is
actively attempting to defeat the pursuer, the CM is not ovadihg. Hence

‘the extra complexity is not needed, but removing it reduces the problem

essentially to an optimal control problem. Optimal control offars easy
implementation, quick results, and the Abliity to provide actual control
information to the CMMCA. '

Puzzy logic, used as an adjunct, would help to implement whatever
solution method is chosen while taking into account the experience and
knowle 'ge of the melcm-htor. It provides implementation of that
experience in a way that remains intuitive and éolatlvoly uncomplicated,
but is still sophisticated enough to eaptuio the needed level of detail.
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III. Methodology

3.1 Introduction ‘
This chapter describes the procedures used Lh this thesis to solve

the CMMCA tracking problem. The solution came from a linear quadratic
(LQ) optimal control approach implemented in a nearly real time computer
uiﬁulation. Located within the hq framework are all the performance
data for both the CMMCA and the CM, system parameters and the actual
mechanism for computing the optimal CMMCA flight path. A fussy
controller evaluates current and future qecqotry and»bro&ldou the
desired set point. A simulation was used for debugqlné,‘modol
verification, and performance analysis.

The first saection discusses background material needed to
formulate the LQ solution and set up the simulation. “thls includes the
solution algorithm and associated implementation details. Then, because
the proper computer tools were critically important to the development
of a working simulation, both the computer hardware and software used in
this thesis will be covered. Next is a detailed accountiag of the

inputs to the computer softwire, as well as a description of the origin

and value of the specific numerical values used. Then the different
scenarios used in this thesis will be deteiled. This will be followed
by a description of the form and content of the simulation output.

" Finally, the d.tailn of the simulation itself will be described.

3.2 Background and Setup - ‘ v
8ince this thesis is concerned exclusively with the solution of

the CMMCA tracking prnblon.»it would certainly bo possible to modal the
flight capabilities of ﬁho CMMCA and the CM precisely. This uouid
involve extensive ressarch into various performance dnd design
specifications and puian-tcr- of each vehicle. S8uch an approcach has .
been eschewed in this thesis, both because it needlessly complicates the
~ basic issue, and because such exactness is neither rejuired nor desired.
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A mors general and less exacting frameswork was used. In order to
concentrate on the theory and problem sclution, it was deemod more
productive to minimize time spent on gathering exact values for maximum
roll :ﬁtol, *g" capabilities, thruat and drag, etc. In placa of exact
data, approximate values were selected so that both CMMCA and CM
simulated porfo:manco closely approximated that of the real vehicles.

| 3.2.1 States of the System. One of the basic issues for any 1Q
approach is defining the states of the system. Since botﬁ the CM and
the CMMCA are free to move in three dimensions, each has six degrees of
freedom. For example, the CMMCA has a position and angle of rotation
along or about each of three coordinate axes. However, for this
problem, the number of states can be reduced to fewer than the number of
degrees of freedom, due to the constraints imposed on the two vehicles,
and the amount of information neoeded to carry out the simulation.

The CM can be described using only its position in two dimensions
as a function of time. Then it is a simple matter to calculate
velocities, accelerations and bank angles. This was further simplified
by several assumptions. The first was that the CM is either in straight
and level flight, or turning at a constant bank angle, and that the CM
makes instantanecus transitions. Second, the CM is flying at a constant
alrspeed of 400 kts (675.11 feet/sec). Third, thae CX maintaine a '
constant altitude of 1000 feet above sea level. Finally, the CM follows
ths preprogrammed prqtilc at all times.

The set of ’tatoo for the CMMCA cannot be as simpls. However,
because of the dynamics of coordinated aircraft flight, the six degrees
of freedom are not independent. 1In particular, the aircraft pitch
(angle of nose above/below the horizon) and yaw (hoidinq) can be resdily
computed from the three velocity components. Bonci the aov-n_lcnlar
values of position, velocity and bank angle can completely describe the

3.2.2 Coordinate Axes. To make thess seven states convenient for
use in cn 1Q formulation, it is necessary to add the rate of change of
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the bank angle (the bank angle tata).' This 8-state vector for tho' CMMCA
then consists of the positions and velocities in an X, ¥, and 2
cooxdinate system, the bank angle and the bank angle rato‘. ‘The
coordinate system is a simple inertial Cartesian system (oriented North,
Bast,and down) fixed to the Barth with its origin at the initial
‘position of the 'cmca (see Figure 10).

2
inertial Z Axis

Figure 10 The Inertial and Body Axis Coordinate syltuu and
Buler Angles (¥, 0 and ¢) ;

To simplify matters, the CM state vector is mads identical to that
of the CMMCA. In the casu of the CM, howsver, the valun”o: bank angle

* and bank angle rate inside the state vector are not needed or

calculated, but merely carried as place holders.

Two other coordinate systems are necessary !o: cottain
calculations. They are a body centered inertial oylun and t body uu
systes. Although these uyotm can be d.ﬂ.nod for nng body, ehoy are

only needed horo for the m
- The body contor-d J.mtnl lyatcm is cxactly tho same as the ﬂ.xod

inertial XY3 coordinates, except that the origin is located at the
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instantaneous position of the center of mass of the CMMCA. fhat i-, it
is an inertial XYZ system with axes parallel to the fixed system and
with origin translated to the CMMCA's present positioen.

The body aris systam is also chown ir Figure 10. The origin is
located at the center of mass of the CMMCA. The positive X-axis is
defined along the direction of the fuselage. ™e pocitivo Y-axis is
dﬁtin.d perpendicular to the X-axis and outward along the right wing.
The positive Z-axis is then defined as perpendicular to both the X and ¥
uxoi, and outward through the bottom of the nircrntt.

Acceleration along the X body axis is the changa in the speed of
the CMMCA (if no sideslip is present). Acceleration along the Y body
axis is sideslip. stdgulip is generally avoided, onpoéially in low
performance aircraft such as the CMNCA; it is agsumed zero in this
thesis. 2 body axis acceleration is caused by the lift of the wings gnd‘
is the "g" force. The upper "g" limit.il bounded by the structural
limits of the CMMCA, while the lower "g" limit is usually a function of
oil and fuel starvation to the enginas and passenger discomfort.

3.2.3 The Control Varinblcl; wiﬁh the states and coordinnte axes
defined, the next item of interest is to determine the control
variables. These variables are the inputs to the systems; by varying
them the system is driven to the desired stats. In problems involving
aircraft, the natural control inpggl are tho movements of the throttles,
control stick or yoke, and rudders.

7 !h.-orcbﬁtrolc togothok fully specify the motion of any
conventional fixed wing aircraft, including the CMMCA. (Tho'rudd.rv
pedals can be ignored here, since their effect is usually to eliminate
sideslip and hence to make all turns coordinated.) The throttle
controls the acceleration of the aircraft along the body X-~axis. The
yoke controls two different accelerations. Fore and aft movement
changes the 1lift produced by the wings and thus controls acceleration
along the body X-axis. Rotation of the yoks controls the rull rate or
rotation about the body X~-axis.
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Although the above three controls are the most natural, they are

not the ones used in this thesis. Instead, four accelerations are used: .

three along the fixed inertial coordinates axes and one being the rate
of change of the bank angle. Xven though the X, Y and % inertial
accelerations are aot directly attributable to phyaicall events (such as
mvi.ng the thrattlu), they can be transformed quite simply into
accelerations corresponding to thtottlo and yoke movements.

Inertial uccoluationu are used mainly to leply the bookkooplnq
and mathematical tractability of the LQ formulation, and to maintain tho‘
intuitiveness of the simulation from the viewpoint of an external o
cbserver. Also, accelerations are used rather thaxi actual physical
movements of aircraft control structures. This is also done for
siaplification. It is ulati‘.voly stralghtforward, but quite tedious, to
convert accelerations to yok. and throttle movements. »

3.2.4 The Linear Quadr:atic Approach. The eight uti.tu and the
four controls for the CMMCA gan be described respectively by

-l
U‘u’
u,

M

: [ ]

E LI YR
we

The dynamics of both the améa and the CM (the plant) can tbon be

| expressed in one of two contral law fomulationn discrete or

continnous. This thesis uses the discrete state oqutti_on
' X(k+1) = o.-xu;y# r,uk) |
Bere X(k) is the state in the kth time interval, U(k) is the comtrol
applied in the kth interval, and Q and T, are tho thu anuunt state
transfer function and control anut utricu, n-pcctively.
Bscause thc CMMCA fl:lqht is, in reality, a continucus ptocon, the
plant was ﬂ.r-t formulated in the cont.nuous form ofvth. state equation

X(t) = A(t) X(t) + B(t)-U(t) - P
The unplod ut:i.cu 9, and I', are extracted from A(t) and l(t). .
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The control inputs U(t) would also actually be applied in
continuous tima, howovor; this thesis used a discrete control input
U(k). It should be noted that the discrete time interval uvased (a sample
time of one second) was small compared to aircraft response time and
thus closely approximated a continuous control input.

The continuous time state equation is:

~foooo1000] _ joooo
{;7. ooooo1c:c;',t 0000
z| [0000001 offz) Jooo ojp
dalel . 000000 0-wl|e . 000 Ofu,
dtjX| joo o 0000 o]l%] 1100 0}jus
Z oooooooog 010 ofl%
¢ [c000000 0ffgf foo10

0000000 o 0 0 0 )

The parametor ¢ represents the roll reaponse of the aircraft. A large

value of ¢ means any b#nk angle change command rapidly affects the bank
angle, while a small value of @ means there will be soms delay before a
comuand to roll right or left is realized.

The cost of control, J, was given in the previous chapter as

J = % xT(ts)S(to)x(ty) + % j: [xT Q(t)x + uT R(t)uldt

over the time intervel [t,,t,]. Weighting matrices 8(t,) and Q are

symmetric, positive semidefinite; R(t) is symmetric, positive definite.
‘Initinl values of Q, R and 8 were nesded to proceed with the 1Q

formulation. The lnltIIIVVllull choaon-fbr Q and R were 7

100 0 0 0 000

00000000
001000 000 1000
Q_:g:g&ooo, gal0200
000 6010
00000000 0001

00000050

© 0000 000

In this thesis, a steady stats approach to the IQ problem was
followed. This meant an infinite f£inal time was used to calculate the
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optimal controls and the Riccati equation loluﬁion. With an infinite
final time, the differential Riccati equation became :he nlg.brilc
Riccati aquation, and the Riccati solution 8 and the Kalqan gain K w.ro‘
constant matrices. The steady state solution tends ﬁo provide
asymptotic convergence to the desired lﬁate.

3.2.5 Time Intervals. Unlike a classical rtqulato:lproblom, '
where the desired state ofAﬁh. systen is conntdnt'gv-r time, tte desired
CMNCA state is continuously chenging as the CM mnn.uvt:qf"tni:ict, the
desired CMMCA state — the set point — is a complex function of the ,
current CMMCA state, the current and future CM ltlioi, and iha range and
angles from the CMMCA to the CM. , ‘ | ‘

To successfully deal with the myriad factors involved, thrie
different time intervals were defined (the simulation itself use?
additional tine intezvals internally). These were thn sample tims:, the
final time updatc‘tim., and the look ahead time. rigure 11 illust cates
these time intervals. Sample time was diocui.od x@_thn pr.viounismctton

and was set to the constant value of one sacond.
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rﬁu CMMCA flight path was broken into a large number of imali‘
gsegments, the end of which were called the final time update time
(FTUT). In essence, a movingktlnal time was being used. The length of
each FTUT segrent was chosen té be tan seconds, although 1t_wou1d be
possible to dynamically calculate the FTUT segment longth based on CM
present and future maneuvering. ‘

At the start of the FTUT Lntorvil, a set point for the CMMCA was
computed, and the optimal controls were applied to drive the CMMCA
towards that point. During sach interval, the set point was constant.

At PTUT, the next set point was calculated, and the CMMCA was then

" driven to that set point. This leap-frogging of set points was repeated

for the entire flight profile.

Figure 12 shows this in detail. The large "X" is the next set
point for that FIUT interval. The CMMCA is driven towards the met point
for the duration of the present FIUT interval. However, bbcaulo of roll
lags and finite accelerations, the CMMCA will only make it to the
location denoted by a "0." JFrom this point, the next set point ise
computed, and the tracking begins again. Thus the CMMCA is driven
repeatedly through a large number of successive tracking solutions.

'To expleit the knowledge of the missile's £1ight'patr, it was
necessary to use ths future CM state. The time interval into the future
was called the lczk zhead time (t_ahead). EHow far into thﬁ future to
look was certainly not clear a priori. Therefore, three different look
ahead timas wtio examinsd: 60, 90 and 120 seconds.

3.2.6 Fussy Iogic and Set Points. As mentioned in the previous
saction, the entire simulation consistad of a series of time intervals
during which the CMMCA was driven to the next set point. The
determination of the next CMMCA set point is far from trivial. Fuszy
logic was used to calculate where the set point should be. It tock iuto
account numercis, although by no means all poseible f.étorl;

The location of the next set point was ﬁasod on whnt‘wa- the best
maneuver for the CMMCA, i.e., the best course of action given the states
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point with the CMMCA in 12 degrees of right bank is also s!

CMMCA's ground track
as It aitempts to reach
next sat point
Points
CMM(';‘tA's Set S -
present ————»
position . CMMCA's actual postiion
» O: ~ at next final ime update
time (FTUT)

Pigurs 12 'rbc CMMCA is Driven in a Suries of Succcuivc 'l'rlcking
Solutions from One Set Point to the Next

of the CMMCA and ‘cx at the present time and in the futura at thoA look
ahead time. To do this, the fussy logic combined all the factors
considered irto a bank angle between the maximum allowable left bdnk and
the maximum right bank. While the same logic with th. nmo tactorl |
could hnvo baen used to compute a speed chang., no -pad chanqn were
considered in this thesis. » ,
Since speed and altitude wera held constant during the -Lﬁuluti;:a,
the only control left was tho CMMCA bank nnqlo. Bon« the fuzey loqic
was used to choose a bank anqlo for the CMMCA. The ut point vould thcn
be located along this theoretical flight path at a distu‘lco ‘ |
corresponding to a flight time of FIUT. PFigure 13 lhow- ltlxc locus of

_ set points that the cmca could reach (the dashed um). 'rh. hrgn

"X's® represent the CMNCA position if the maximum bank lng\lo of 30

degrees is used, o:ifthomdounottum. As an

The bank computed by the fuszy logic is not muurt Y :-um to

the bank angle gcnozatod by the optimal control. The 1oqi.a'l bank angle
is just a convenient way to determine the set point in terms of where

2
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e ( N —
1 / 1
| - /
Locus of Sat Polnts
x CMMCA Ground Track :
o R at & commandad Right ;
..... - X Bank of 12° :
CMMCA Ground Track "
with no Bank
CMMCA Ground Track MCA Cround Track :
at Maximurn Left Bank Bank :
Angle (30°) )
|
! CMMCA Present Posltion :
| .
: Pigure 13 The Locus of Possible CMMCA Set Points ‘
| ‘ : f
|  the CMMCA is capeble of reaching. It was then a simple matter to
. $
\] transform this bank angle into # noint in inertial space. :
Thess values were idealized in the sense that current bank angle l
i was not considered. In other words, it was assumed the CMMTA would
; instantaneously achieve the desired bank angle. The lag Gaused by the
‘ roll rate led to minor errors between actual and set point states. {
However, this was counteracted by two factors. PFirst, the next set !
point was recomputed at each PTUT independsnt of past calculations, thus ¥
freeing current errors from future considerations. Becond, the lag i
occurred on both ends. Altnough the CMMCA took a finite amount of time
rolling into bank, for example, at the start of a ¥IUT interval, the i
same lag occurred at the naxt FIUT interval, effectively causing the
CMNCA tu correct for the lag time. |
The fuszzy logic for computing the required bank angle is applied N
in two parta. The first part determines required bank angle using the ;
C .43
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current valuea of the CMMCA and CM states. This is the t_sow bank

logic. It is based on the radar gimbal azimuth to the CM, the range
from the CMICA to the CM, the angle between the heading of the CMMCA and
the heading of the CM (the heading crossing angle or HCA) and the turn

direction of the CM (left turn, no turn, or right turn) (see Pigure 14).

CM Heading
. ) ' - .
HCA . cM
Ground Track
M S\
iy I CMina
</ “ Right Tum
CMMCA
Pigure 14 The Fuzzy Logic Inputs for Set Point Comwtat:l.onl
at Time t_now ‘ o :

The t_now bank value is most concerned with whether or ynot the

rang3 or radar gimbal azimuth is approaching a limit and getting worse.
If so, the t_now logic dssands a large bank angle to correct the

condition.
correcting, then the t_now logic generally requires little bank

The second part of the bank angle lo¢i.: uses the future knowledge

of the CK flight path. This is the ¢_next bank logic. The required

bank angle is bdsed on the HCA from the CMMCA's present heading to the

“

If no limits are near, or are close but the CMMCA is alroady
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Ci's future heading, and the radar gimbal azimuth from the CHMCA's
present position to the CN's future position (see Figure 15).

CM Heading
at t_next

CM
’” Ground Track

" Radar Gimbal
attnext

1'.

‘-{F CMMCA att_now

Pigure 13 The Fuzszy Logic Inputs for Set Point Computations
at Time t_next

The t_next logic works significantly differently than the t_now .
logic. It is biased towards eliminating future problems by building
turning room early. This is done by the t_next logic generating CMMCA
turns away from the CX in an attempt to create an offaset. This is
designed to avold both losing radar contact from delayed CMMCA turns and
decreasing range due to cutting off the inside of the CM's turn.

Fussy logic was then used one last time to combine the required
bank angles derived from the pressnt and future calcilated values. The
fussy logic that combined the t_now and t_next results was essentially a
balancing act. 1If the limits were currently being approached, then the
t_now required bank was the net result. On the other hand, if the
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limits were currently not cloge, then priority was given to the t_next
results. Some additional decisions were made to prevent the CHMCA from
building too much offset by continually turning nwiy from the 2ZM.

An important difference exists betwsen this thesis and the works
of Garton #-.d Hachman. They specified a nominal range (either eight or
ten miles) and a nominal radar gimbal azimuth (zero degrees). FRny
deviation from the nominal resulted in thc CMMCA applying control inputs
to correct back to that position. Here, the entire region from
ipproximatcly six to fourteen miles in range (lnavlng‘a one mile bﬁffar)
is considered to be completely acceptable. It is only as range reaches
its limit that large controls are generated. OthLorwisa, cnly enough
control is demanded to ensure the range stays within limits. The
asimuth control is egquivalent. Anywhere within touqhiy $55 degrues ie
acceptable. Only as azimuth approaches the limits of 260 degrees, are
large bank angles demanded to rsturn the CMMCA to within limits

(Pigure 16).

T N SV

Y-Pogsition (rm)

-15 -10 -5 0 5 10 15

X-Position (nm) ' ,

Pigure 16 The Radar Envelope Depicting the Region of Uniform
' Performance
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3.3 Computer Resources

3.3.1 Hardware and Operating Systems. Two different platforms
were used in the dsvelopment of the simulation. Much of the initial
work was done on a Sun S8PARCStation 2 running S8unOS8 4.l1. The majurity
of the work was performed on an IBM compatible personal CQmputcr.(PC).
The PC used an Intel 80386 processor running at 25 Mhz, equipped with a
math coprocessor chip, oiqht‘moq‘bytos (MB) of RAM, a 65 MB hard disk
and a VGA graphics card with 0.5 MB video memory. The PC was running
MS-DOS 5.0 and Microsoft Windows 3.1. ‘

3.3.2 Application Software. The entire simulation development
affort was done in the Matlab environment. Matlab is a product of The
MathWorks, Inc. of South Ratick, Massachusetts. The large computer
version (e.g. 3un Workstations and VAX's) is Pro-Matlab, while the IBM
PC version is PC-Matlab.

Matlad "integrates numerical analysis, matrix computation, signal
processing, and graphies...” and inciudes "...programmable macros, IKER
arithmetic, a fast interpreter, ard many analytic commends (16:3)." It
is driven from the command line, making it fully interactive, yet it has
a s.ignificant programming capability in a matrix oriented, high level
language. '

Two of its most important features are its extensibility with
M-fi.3s and its toolboxes. M-files are ASCII files of Matlab commands
that are executed ~ithez sequentially in batch mods, or else add new,
user defined functions #o Matlab. The toolboxss are Matlad suppliod
function libraries in tﬁo form of N-files.

The Matlab toolboxxsinulink is a way to simulate dynamic systenms.
It allows the user to build a simulation by adding and connecting blocks
in a graphical environment. 8imulink comes with dozens of predefined
blocks and easily incorporates new tuhctlonality by incorporating
N-files. 1Its Lnt.ractiv.'naturc allows for real time debugging, as well
as providing any desired output for examination or additional debugging.
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8imulink is complled at run time, and runs noarlf as quickly as an
equivalent FORTRAN ptogram‘(17:3-11).

A number of H-tllol_wore written during the course of this thqall.
The files in Appendix C were used pricr'to a simulation run. The first
four M-files convert CM flight paths into the format needsd during the
simulations. Th..laat five M-files are used to set up the glcbal
constants, find the Kalman gains used to compute th§ optimal controls,
and generally to prepare everything foi the simulation. The K-files of
Appendix D were used during the simulation runs. They all appear in the
overall block diagrams of Pigure 18, Figure 19, and Figure 20 discussed
later in this chapter.

The following versions of Matlab and its toolboxes wers usei:
PC-Matlab Version 3.5a (15)

Pro~-Matlab Version 3.45 (16)

Control System Toolbox Version 3.03 (4)

Spline Toolbox Version 1.02 (18)

Simulink Version 1.2.1 (17)

3.4 Simulation Inputs and Parameters o

The simulation is driven almost entirely by the ca; ‘bilities of
the CMMCA and by the flight profile of the CM. The CMMCA's parameters
are perhaps the most important, yet the hardest to quantify exactly. As
previously discussed, this thesis took the approach that the exact
values were not required, merely reasonable values providing performance
closely matching that of the CMMCA. ‘ ‘

On the other haqd, oxirt CM data was not needed becauss the CM .
performance was not truly modelled at all. The CN capsbilities were
embedded within its flight profiles, which were assumed to be objective
fact. Based on the CM position as a function of tima, various values
such as heading and acceleration could easily be calculated.

J.4.1 CNMCA Parameters. As in all design problems, there are a
large number of constants to be chosen, and it is seldom clear a priori
what vniuon to choose. A common method is to chooii values based on

experience and guesswork, and then adjust the values until the response

48

T S O SN

e i) e

SR -CVURPIPRE S A

ot e i L ke AR R e e R i

N,



closely matches expectations. This method was adopted to set many
parameter values used throughout the simulation. These included:

1. the maximum roll acceleration (§),
2. the roll coupling constant (e),
3. the various times used (sample time, look ahead time and PFIUT),’ and

4. the value of the cost functicnal coefficients found in the Q and R
matrices of CThapter 2, equation 3.

A number of parameters were dealt with by simplifying assumptions

as discussed at the end of Chapter 1. These includodx.

1. no sideslip (CMMCA in fully coordinated flight at all times),

2. CMMCA velocity constant at 400 kts,

3. uniform radar performance throughout entire region of coverage, lnd
4. CM initially at the center of the CMMCA's radar coverage.
Additionally, some parameter values were used essentially unchanged from
Hachman's thesis. These parameters includod the mngimum bank angle and
the radar coverage limits. \

The initial value of the maximum roll acceleration was estimated
"~ from the roll performance of aircraft similar to the CMMCA. This led to
a maximum value of roughly 8 deg/sec?. Values for ¢, Q and R were set
initially at ¢ = 0,1, Q and R as shown above in section 3.2.4 (2).

With these values set, a number of trial simulations were
performed ﬁhat forced the CMMCA to make a series of turns. Examination
of the bank angle ~ates and iccolcrationl was followed by a modification
of the ccupling constant to ¢ = 0.2; Q and R were left unchanged.
Through this trial and error procedure, the simulated turn performance
closely matched that of the real aircraft. These values were then fixed
for the remainder of this thesis. |

The several time parameters were chosen for rather pragmatic
reasons. The sample time of one second was selected because it seemed
small encugh to capture any significant details, yet not so small as to
vastly increase computer time. The shortest and longest flight profile
times were 442 and 1850 seconds, hence a oamplobtim. of one second was a
good compromise value.

The value of FTUT was originally chosen to be approximately an
order of magnitude greater than the sample time. Because the simulation
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worked well with the chosen values of sample time and FIUT, there was
subsequently never any reason to change these values. k

Look ahead time, however, is .ubjdct to much greater variability.
Ths values that were finally chosen for consideration uiro: 60, 90 and
120 seconds; simulations using all three times were run. Look ahead
time is discussed in more detail in Chapters 4, 5, and 6.

3.4.2 CN Parameters. The only CN data known at the cutset is the

initial position and ground track. The rough politiod data is converted
first by decomposing it into a series of circular and straight segments.

Because the position daél is sparse, these segments would, in a sense,

be best fit curves. For this thesis effort, the CM data was taken as if

raw data had alresady been fitted to a series of clrcularvand straight

segments. ,
The position of the du wns‘computod at 1ntor§alu of one second
{(the sample time) along each segment for the entire time of flight. The
position data was used to generate a matrix of CM headings, positions
and directions of turn at intervals corresponding to FIUT (every ten |
seconds) for the entire time of flight. This matrix was used by the
fuszy logic to compute the next set point. Although thii could have
been done at sach set point calculation, pre-computing this matrix sped
up the simulation. ‘ |

éﬁ. position data was also run through a cﬁlino generating
Matlab M-file and differentiated twice to produce th; (inertisl)
accelerations of the Ci. The purpose of generating splines was because
of the sparseness of the actual CM position data. It is extremely
simple to intervolate along a spline; alsoc the d.tivntlvtiltboroby
produced will be much smoother than from the raw dnti. |
‘ Circular segments were characterized bybfou: parameters, fho
inertisl position and velocity at the start of the turn, the diroctloq
of turn and the numbers of degrees to turn. Straight segments were

characterized by three parameters, the initial position, the heading,
and the length of the segment.
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The transformation to circuinx and straight segments was
simplified by the assumptions that the CM was flying at a constant
velocity and that, when turning,'it did so at a constant bank angle. As
reported by Hachman, the CM used 20 degrees of bank in his profile four
(7335). This thesis examined Hachman's profile four using both 20 and

30 degrees of bank.

3.5 Scenarios
All scenarios began with the CMMCA 10 nm in trail of the éM and

displaced 1000 feet to the West (left). Because this nominal range is a
slant range, the CMMCA has an actual ground range of

J(10+607617 = (29000~ (-1009))7) < (0-1000)7 = 53,915 ft

With no loss of generality, the CMMCA is initially placed at the origin
of the inertial coordinate axis system and the CM due north at
coordinates X = 53915, ¥ = 1000. Hence both vehicles also have initial
headings of 360 (or 000), lnd‘initinl X and Y velocities of X = 675.11
ft/sec and ¥ = 0. The CMMCA's I coordinate is fixed at -29,000, the
CN's § coordinate at -1,000, and both their verticel velocities are

t =0, '

This thesis examined the performance of the CMMCA over three
different scenarios. They corresponded to Hachman's profiles One,
three, and four and are repsated in Pigure 17. To prevent cohfuoion
between nomenclaturs, thoyvvill be rofirrod to as profiles A, B, and C.

Profile A was essentially a quick response, tuning and
axperimental scenario. The simulation and fuzzy logic were d.voloﬁod
and teated fivst against this profile because of its simplicity and
because of the much smaller simulation time (442 vs 1850 seconds for
profile A vs proflle C); consequently any debugging involved far less

~output to examine. Since profile A consistad of only one turn, it was

ideal for developing the most fundamental portion of the tracking
solution — a single turn by the CXN.
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riqur. 17 The P:otilcl Used in this Thesis

Profile B contained two larqt turnc, and was thus a unotul means
of testing the ability of the CHMCA to transition from one CX maneuver
to the next. This profile was used to furthor tune the fussy logic to
ensure it could position the CMMCA properly betwean maneuvers.

Profile C was important fcr two roasonl.. It representad l‘
challenging real world €M profile. Also, it is important to test the
zesults of the simulation development on a profile that had not‘boon '
used to construct the simulation. In essence, profile C provided an
independent verification of the results of the CMMCA tracking solution.
Because the value of look ahead time was not fixod, runs that looked
promising were performed at all valucs of look shead time (60, 90 and

120 seconds).

3.6 BSimulation autput-

liuulink allows output of nny vnluo during or attor tho
-tnulation. As an aid to dehugging, ths output anludod vnriou-
intermediate fuszy logic calculations, radar range and radar gimbal
angles, the states of the CMMCA and CM, the bank, pitch and heading of
the CMMCA, the commanded and actual controls (roll nccolc?uticn aud
inertial components of the X, Y and £ accelerations) and the simulation
time. Also output, as raquired for debugging on different oécanionl.
were various results produced internal to the several K-fliles as they
computed set points, limited centrols, converted body to inertial

coordinates, etc.
82
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To determine the success of the simulation, the radar range and
gimbal angles wers needed. To provide plots of the CMMCA and CH, and to
show their relative position, the only additional information neeied was
the inertial positions of the two vehicles, which cams directly from
their state vectors.

. The form of the output from the simulation was easy to interpret.
anuank by default generated an output value at each sample tlpo.

Since most ocutputs wers vectors, the full output over the simulation was
a matrix with the number of rows equal to run time and the number of
columns equaling the size of the ;utput vector. For example, the
CMMCA's state vector output was a 442 by 8 matrix for profile A, or
28,288 bytes (numbers used 8 bytes of storage each). v

3.7 The Simulation
A block diagram of the simulation is shown in Figure 18. It can

be broken into five main sectlions:

1. the CM stete-space,

2. the CMMCA state-space,

3. the set point calculation including fuszzy logic,
4. the controls to be applied, and

8. the bank angle acceleration limiter.
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The CM state-space calculations have for their input thﬁt
accelerations from the profile ground track and are discussed in
section 3.4.2. These acceleratious are fed into the ltatc-ipacc
equations and integrated at each samplas time.

The CMMCA state-spare 'cglculationn are similar to that of the CM,
except that the accelsrations come from the other blocks of the systam,
rather than externally from th. greund track Lnfomtion; The v;].u. of
the state variables at each umfh time are also used to cénéutc the |
‘suler angles, that is, the heading, pitch and bank angle. The heading
(¢) is derived from the projection of the velocity onto e_ﬁo XY plane. .
The pitch (0) is simply the angle derived from the velocity component

~along the I axis. The bank angle comes directly from the state vector.

The set point calculation is shown in more detail in Pigure 19.
It takes the CM and CMMCA states and the CMMCA suler angles as inputs,

producing the next set point as output. The first block represents an

M-file that computes the radar range and radar gimbal angles from the
CMMCA to the CM. If the simuiation time has not yet advanced to PTUT,

‘then the current set point is extracted from memory and the fuszy ldgic‘

is qkippod. .

Gm:al.nj :Q%; BRTS
M Set_ptm L
(T M o~

putag | EulerAngise Compute
Rader range @ >
Qe A Clock ‘ ot

Pigure 19 The Set Point Computation Sub~routins

If simulation time has reached FTUT, then the states, sulcr anql‘u'
and radar values are fed into the fuzsy logic M-file. ' The fussy logic’ B

has already been described i section 3.2.6. The output of the fuzay
logic is the inertial XYZ set point; this is augmented with the current
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CMMCA bank angle, X, Y and £ velocities and bank angle rate to prdvidn
the output in state space form.

' With the current state and set point of the CMMCA available, the
simulation next computes the controls needed to drive the CMMCA to the
set point. This is carried out in the blocks in the upper right corner
of Figure 18. The relative error botw.on the prasent CMMCA state and

" the set point is computed and multiplied by the control gain matrii b 4
derived from the solution tc the Riccati equation.

,Th... controls are the XYZ inertial controls. Thﬁy are combined
with the suler angles to transform the controls to accelerations in the
body axes. RBvery attempt is made to preserve the direction of the
commanded accoloration.‘ Because the CMMCA is at a constant speed, the
bo@y X-axis acceleration is set to zero. 8imilarly, because no sideslip
is allowed, the body Y-axis accmleration i- set to zero.

Hence the only acceieraticns allowed are along the body f-axis and
the bank angle acceleration. The bank angle will be dealt with below.
Since ﬁho CMMCA currently move; at constant altitude, the body Z-axies
acceleration must just balance the force of gravity. It turne out, than
that the constant altitude, constant airspeed and no sideslip |
requirements constrain all accelerations except that of the bank angle.

The bank angle acceleration calculatious are shown in full detail
in rigure 20. The needed inputs are the unlimited X, Y and £ inertial
accelerations, the euler angles, the current bank angle and the bank
angle rate. As described above, the inertial X, ¥, and £ accelerations
are convarted to the body axes and then projectad onto the Y$ body axis
plane. The bank angle producing this direction of acceleration is then
sasily found by setting the CMICA's wings perpendicular to this

| projected acceleration. '
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Figure 20 The Bank Angle Acceleration Limiter Sub-mtim
This commanded bank angls is thsn limited to the CMMCA's maximum
bank angle. The result of Figure 2C is '

oommentes * (Printtes = Pactuer) * Kol4,4) = @perur * K (4,8)

which is just the Kalman gain applied to the bank angle and bank angle |

rate. This commanded bank angle acceleration is then limited to the

macimum value of eight deg/sec?.
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IV. Controller Development

4.1 Introduction

This thesis lﬁcconlfully built a simulation using optimﬁl control
thecry and fuzzy logic to lolvo‘tho CMMCA tracking problem. The
simulation was built and vsrified using an incremental approach. This
chapter describes how the simulation was constructad, the problems
_ discovered and the fixes introduced during its development.

4.2_ S8imulation Developneat

The simulation was developed in stages. The first ltago'wal to
build a means of generating CM flight paths. The second jtago was to
develop an ideal optimal controller. This contréllot walgld.al in the

sense that it drove an infinitely maneuverable CMMCA to o&o mile in .

trail. The next step was to incorporate the actual limitAtionl of the
CXMCA into the simulation. Pinally, the one mile trail position was
/

changed to the actual radar envelope of the CMMCA. ;

6.2.1 The CN rlight Path Generator. This has been pnrtially
discussed in section 3.4.2. The flight pith generator wat?vrltton as a
general purpose Matlab routine using sevesral M-files. The CM bank
angle, and consequertly its turn radius, is hard-wired intL the flight
path generator. Currently it is set to 20 degrees. The o;tput is
urittqn to a disk file for permanent storage. All of thess computations
are performed off-line to speed up the -LmulationQ '

The input is a flat data file consisting of an n X 2 array. ERach
of the n rows corresponds to either a straight or turning flight path
. segment. The first column is that sagment‘s turn direction: -1 for a
left turn, +1 for a right turn and 0 for no turn. The second column is
a duration -~ the number of degrees to turn or the distance (in feet) to
go straight. '

"After reading this data file, the generator takes each segment in

tugn, creating an array of points along that segment at one second

. 87

L . L vy N S PR L
Wk B st el e o el O PR et bl Ak e e LR e s il

D i st Sem a2

et e

o B i e 4B 4 La B0 e A i T o sl I

SPTCIENG BN S VR Ry A Y A T




intervals. Then a spline is fitted to these points and ditforcnii;tod
twice to provide an array of CM accelerations. After all leqmentn ara
complete, thoy are combined into the array "U" shown as the CM
accelerations in the upper left of Figure 18, Chapter 3. This array is
also used to generate & second array of CM headings, X and Y positions,
and direction of bank at one second intervals.

' 4.2.2 The *Ideal” Optimal Controller. This is implemented as
shown in Pigure 21, a simplified version of the ultimate énntrollcr of
FPigure 18. At this stage of the simulation development, the CMNCA has
no limits on its performance: it rolls instantaneously to any dank,
changes to any speedkin zero time, and is capable of goh.ruting infinite
accelerations. Tha CMMCA's position has been ;et to one nautical mile

{grourd range, not slant range) in trail of the CM.

oM - Compus (O——{Time]

Accslerations at 1 nm trail Clock
0 ) > M-le
State-Space Optimal
Gains
L
I————)CMMCA .2 K
State-Space : Set '
Relative Emor

Figure 21 Block Diagram of Simulation for Unconstrained CMMCA
Maneuvering

Because of the unlimited controls, the CMMCA, should be abie to
exactly track the C4. At each time step, the set point is computed one
mile dead astern the CM. Then the optimal controls are applied to the
CMMCA to drive it there in that one second tims interval. This moans
there is no residual error; at each sampls time control calculation, the

CMMCA starts érocilcly from where it is supposed to bo;




This stage of development had two major purposes: 1) to become
completely familiar with 8imulink and all of its complexitiocs,
intricacles and idiosyncracies; 2) to develop a working, albeit vastly
simplified (and still incomplete) simulation. One of the many problems
with this stage, of course, is the that the lack of limits lond-.to
CMMCA accelerations of many hundreds of "g's,” and speed changes of
thousands of knots. This is dealt with at the next itaq..

The reason for one mile trail as opposed to the nominal center of
radar coverage at ten miles is for simplicity. A position ten miles in
trail would result in significant crack-the~-whip problems as the CM
turned. The intent was not tracking to maintain radar coverage, but
simply to control the CMMCA.

This portion of the simulation building went relatively smoothly.
The CMNCA was able to track the CM on any profile under consideration.
Achieving this step provided the ability to fall back to a working
simulation if problems were oncoﬁntcrcd later in any of the stages,

4.2.3 The Optimal Controller with Limits. Incorporating the
physical limitations of the CMMCA into the simulation resulted in a
simulation close to that of Pigure 18, Chapter 3. However, the set
point is the same as in the previous section, that is, one mila trail.
In this step, the CMMCA is limited in bank angle, roll rate, "g"
capability and speed change. Hence, the CMMCA cannot generally roaqh
the next set point. Nevertheless, the CM profile should allow the CMMCA
to track it well from the one mile trail position.

Tracking was not directly a major goal at this stage. The real
goal was to properly code the CMNCA physical restrictions into the
simulation. Tracking was merely feedback to verify the restrictions
were implemented correctly.

The first serious difficulty was encountered at this point. The
idea was to compute the connnndoq CMMCA inertial accelerationa. and then
to limit this acceleration based on the CMNCA's capabilities while
malntaining the direction of the original, unlimited acceleration. This




led to conceptual problems as to exactly Qhat that direction meant and
how to properly limit the acceleration. _‘

As mentioned in the previous chapter, the inertial acceleration
was transformed into the body axis coo:dlnatorsyntem. Then the X
componentIWAI limited independently, since it represented a change of
the CMMCA's spsed. The Y and Z components togethsr represented the
acceleration of the CMMCA due to lift from the wings. It was unclear,
how-vor, whether this also sho1ld include qtﬁvity.

Bventually, it became clear that the‘Yz body acceleration was the
direction to maintain and did include gravity. 1In éther words, the
CMMCA's "g" acceleration, sideslip acceleration and the acceleration due
to gravity should add up to an acceleration in the same direction as the
commanded YZ body acceleration.

This was often not possible, however. Suppose the CMMCA was in
thirty degrees of left bank and the commanded acceleration was to the
CMMCA's right. No combination of allowable sideslip and "g" would allow
tae CMMCA to go right while in left bank. The allowable sideslip was in
the range of 1/4 to 1,10 of a "g,"” moreover, the desire was for no
sideslip. Therefore, the decision was made to restrict the CMMCA to
gero sideslip. Its contribution to CMMCA capabilities was minuscule, it
would never actually be used by the aircrew, and it vastly increased the
complexity of the control limiting algorithm.

With sideslip limited to zero, and speed controlled independently,
the only acceleration left was along the Z~body axis. Maintaining the

.direction of the commanded acceleration was then a simple matter of
finding the "g's™ that, together with gravity, made their sum as close
yas possible to the original commanded acceleration.

The heart of the limiting process, then, was not really the X, ¥
or £ accelerations, but rather the bank angle nccolo§¢t£onl. The CMMCA
can really only accelerate in the direction in which it's barked. Thus
it must be forced to bank in the required direction, as determined by
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the direction of the commanded acceleration. The bank angle
acceleration calculation was shown in Pigure 20, Chapter 3;

This calculation is really just multiplying the CMMCA states by
the optima) gains, «.ctracting only the § (fourth) component of the
control, and then limiting tLe resulting CMMCA bank angle acceleration
command to match the CMMCA's capability. The -¢°K (4,8) portion of the
calculation (lower half of the figure) serves to decreass the
acceleration to zero as the roll rate grows. Tho'uppor half of the
figure corresponds to decreasing the acceleration to zero as the bank
angle itself approaches maximum.

This is one iupurtant area where this thesis differs markedly from
the prior three. Hers the bank angle is automatically kept within
limits; the structural limits are never exceeded (there is actually a
slight over-bank of up to one degree due to aircraft dynamic;). Thus
only the radar limits can be exceeded with this method. '

To verify the proper working of the limiter algorithm, the CMMCA
was simulated oves several flight paths. The early trials were with
short profiles, and as confidence increased, longer profiles were used.
The current algorithm is apparently correct, since the CMMCA has the
ability to track the one mile trail position quite well over a fairly
convoluted profi.e. It will not track perfectly due to its designed
limitations. The cause cf most of the error between the CMMCA's present
position and the set point is because of the delay imposed for the CMMCA
to roll to the needed bank angle and begin turning.

4.2.4 The Radar Envelope Set Point with Fuzsy Logic. At this
stage, the CMMCA doms not yet accurately track the CM, since no account
is made of the information supplied bv the radar or the knowledge of the
CM's future ground trzck. The controller needs to dynamically compute
and alter the set point based on the radar and the CM's f£light path.
This is the final stage of simulation development wherein fuzzy logic

was used to determine set points.
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fhe transition from the previous simulations to this last stage
involved a fundamental conceptual shift. The prior work involved
determining set points relative to the CM — one mile trail of the CM.
At this stage the shift is towards making the set ﬁoint relative to the
CMMCA itself. Section 3.2.6 discussed set point determination in
detail; the next section will discuss the fuzzy logic that determines

" the set point at intervals of PFTUT.

4.3 Development of the Fuszy Logic

4.3.1 Introduction. The fuzzy logic was discussed at laﬁgth in
sections 3.2.6. The nature of fuzzy logic requires that expert
knowledge, opinicon and intuition be a fundamental portion of the set
point logic. The logic was used to drive the CMMCA to luccessiyo sat
points, each one chosen to maintﬁin current radar coverage and to ensuté
that radar coverage would be posaible in the futurae.

The prime meens of ensuring future radar coverage was to recognize
approaching problems and to avoid them by having the CMMCA maneuver
early. Recognizing problems early meant examining where the CM will be
at the look ahead time (t_ahead), as well as what it's doing then.
Difficulties arose any time the CM went into a long turn (exceeding
roughly 90 degrees). As discussed in Chapter 1, when facing a large CM
turn, the CMMCA is hard pressed to maintain radar coverage.

The solution appeared obvious (from the pilot's perspective): turn
the CMMCA slightly away from the CM's upcoming turn to build turning
room, turn back into the CM to prevent it drifting out the side of the
radar coverage, then turn back inside the CM's turn circle (see the
plots in Appendix A for examples). The initial offset allows the CMMCA
to delay its eventual large turn. This delay prevents the CMMCA from
drastically decreasing the range, because otherwise it would be forced
to turn much earlier, closing the distance ligniticantly.

Another important, yet related portion of the logic occurs aftar
finishing a maneuver and before beginning the next. Instead of the

CUMCA iimply returning to a trail position, it is better for it to
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displace off to one side. The l;do chosen should be th§ side opposite
the next turn direction, thus automatically building in turning room.
The furzy logic was implemented in five logic tables. Three
tables computed the contribution to the CMMCA's bank angle at t_now, one
table at t_next, and the last table combined the t_now and t_next |
values. Zach table was purposely doliqnod'to stand alone; that is, only
tho‘anut- for that table were taken into consideration. Although it |
seems artificial to separate out and ignore other factors, the
alternative ias actually to create ono extremely 1qrgo and complex table
with six or eight inputs and as many logical operations. Doing this
would defeat the entire purpose of using fuzzy logic: the intuitiveness
and simplicity. '
rurthofmoro, the different inputs were all considered by using

nested logic. PFor example, four factors were used, two olch in two
diffrvent tables, to determine the two inputs to the t_now bank value.
Then they were in turn used as the inputi to a third tablobto compute
the t_now bank command. This fashion of modularizing the fuzzy logic
was similarly used to combine the t_now and t_next values.

' The fuzzy logic tables that follow in this chapter represent the
final results at the conclusion of the experimental process. A
qtncunlion of the evolution of the table entries is located in

section 5.2.
4.3.2 1% t_now PFuxzy Logic. Although creating an offget was

iﬁportsnt to prevent future CMMCA tracking problems, it was equally

important to preclude loss of radar coverage in the next few seconds.
The t_now bank command logic was crafted to avert imminent loss of radar
coverage in the extreme case, and to force the CMMCA to follow the CM
with more moderato controls in other cases. This logic (Table 6) was
synthesized from the outputs of two fuzzy logic tables (Table 5).

Table 5a uses the current azimuth to the CM and the heading
crossing angle (ECA). Table 3b uses the range to the CM, the CM's turn
direction and the sign of the radar gimbal azimuth (21,0). Both tables
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are based on the variables displayed in Figure 14 and Pigure 15 and

discussed in section 3.2.6.
Table 5 Logic Tables for t_now Bank Using Azimuth and HCA, and Range

forward.

and CM Turn Direction .
S st s AT R I P B

I Azimuth HCA azi_hca row # | Range M8 | rng dir i
P 1
LpP 2 POS LP
Lp 3 LP IR0 LP*D ’}
sP 4 NEG LN
SP 5
sp 6
sp 7 POS sp
sp 8 SP SERO SP*D
ZR 9 NEG SR
SN 10
sP 11 .
sp 12 PoS R
ZR 13 ZR SERO ZR
SN 14 NEG SR
8N 15
sp 16
ZR 17 POS N
8N 18 SN SERO 8N*D
SN 19 NEG sp
SN 20
SN 21 :
& 22 oS LN
s 23 LN ZERO LN*D
LN 24 NEG LP
- S B+ A P e i

The logic for the azimuth/HCA table (Table éa) is straight-

If the CH is nearly at the edge of the radar azimuth limit and

not correcting back, then the CMMCA should make a hard turn towards the

If the CM is nearly off the side of the scope, but is correcting

back, then the CMMCA need only make an easy turn towards the CN.

If the

CM is off to the side but not close to the edge of the radar envelope,
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then the CMMCA should essentially make an easy turn in the direction
that the CM is heading.

For example, if the CM is to the right and going further right
(lines 6 & 7 of Table 5a), then the CMMCA should make an easy right turn
to hold the CM at the same azimuth. 1If instead the CM had been moving
back to the left (lines 9 or 10), then the CMMCA should maintain heading
or make an easy left turn. If the CM is at small azimuths (lines 11- |
15), then tho'CHHCA should make an easy turn in the dirsction of the
CN's heading.

Table 5b implements the fuzzy logic to control the CMMCA's turn
using the radar range to the CM, the CM's turn direction, and the
azimuth to the CM. The decision logic is simple: if the cuncx is too
far behind the CM, it needs to decrease the range by cutting across the
CM's turning circle. 1If the range is too small, the CMMCA needs to turn
away from the CM to increase the range. When the CM is turning, the
dire..ion for the CMMCA to turn is either in the same or opposite
direction as the CM. Hcwever, when the CM is not turning, then the sign
of the azimuth to the CM is used to determine which direction is away
from the CM (the factor of "D" in the table). .

Table 6 consists of thovlogic used to integrate the two bank angle
values (scaled) computed by Table 5. This integration is based on
ﬁa--inq through ui:changed any large bank angle command (LN or LP) from
either component. This is biased slightly in favor of the azimuth/HCA
components versus the runge component. When neither component is large,
the output of the cort.npondinq>rulo is, in some sense, the average of
the two components.

4.3.3 The t_next Fusey Logic. The fuzzy logic to determine the
CMMCA turn at the look ahead time is more complicated. It is based on
' building turning room early by having the CMMCA turn away from the CM
(see Table 7). None of the outputs from this table are large. This is
. to ensure that while a slight turn away from the CM can occur, large

turns will not happen, and that large t_now values will swamp t_next
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- Table 6 Logic Tabls for t_now Bank Combining Results from
Azimuth/HCA and Range/CM Turn Direction

I aziﬁhca AND rngi_s dir THEN nowﬁbank

LP any value LP
Lp Lp
sP 8P
sSp . IR SP
8N ‘ - SR
Lp Lp
v 8P ‘ sp
ZR ZR ' ZR
SN " SN
LN LN
Lp 8P
. . 8P ZR

SN ZR 8N '
SN SN
LN LN
LN any value .

values when those resulés are combined. Also, it aolvéd an early
problem wherein the CMMCA continually turned away from the CM, never
turning back towards it. ,

4.3.4 The Net Bank Fuzzy Logic. At this point, th:ve is one bank
command value usually forcing the CMMCA to turn towards the €M in order
to track it (the t_now value), and another forcing the CMMCA to offset
by turning away from the CM. Balancing the near term and future
requirements was therefore a critical task. The means of accomplishing
this often contradictory task were discussed in section 3.2.6 in general
terms. The final form of the logic is shown in Table 8.

The first and last row of the table correspond to the situation
where the CMMCA must turn immediately or lose radar contact. The output
for all such cases is made independent of any t_next consideration, and

is a hard turn towarde the CM to preserve radar coverage.
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Table 7 Logic Table for t_next Bank ﬁling Azimuth and HCA at the
- Look Ahe&d Time

r n.x:ilzi AND nexi;aca THEN pcxzibank
Ly 8N
- . 8P ‘ 8N
- LP IR : ) 8P
8N sp
| ‘ ' IN ) 4
L? ax
8P SR
sp "~ 2R ZR
SN sp
LN ' 8P
LP . 8N
8p : SN
ZR . ZR ZR
SN SP
LN SP
LP 8N
. sP SN
SN . ZR ZR

All rows other than the first or last correspond to t_now coamands
for a amall or zero turn; the CMMCA only needs a small bank to track the
CM and the need to turn is not urgent. Here is where the balancing of
present and future commands occurs. The majority of weight is given to
the t_next input, since the CMMCA is not in any immediate danger of
losing radar coverage. Negative t_now values (left turns) result in an
ovtput equal in size but opposite in direction as for the positive case.

4.3.5 The Fuzzy Set Membership Functions. While the decisions
implemanted in the fuzzy logic obviously drove the commanded bank for
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AR R S AR
IF t now bank is t next bank is THEN net bank is
LP any value LP
8P pN 4 LP
8p 8p .8P
)4 ZR IR
8p &N &R
24 LN SN
ZR Lp 8P
IR sp 8P
. ER IR SR
ZR 8N SN
ZR LN SN
8N LpP 8P
8N 8sp IR
8N ZR IR -
‘ 8N 8N : ‘ 8N
SN LN ' N
LN : any value LN I

the CMMCA, it turned out that the m«mberlhip functions wers also
important. The first half of choosing a membership function was to
determine how the raw, analog values should map into the scaled range
[-5,5]. The second half of the membarship function was the shape of the
function itself. The shape and spacing of the membership functions
suggested in the litarature was shos«: in Figure 7, Chapter 2.

The mapping applied to five of the factors used in the fuzzy logic
tables. They are summarized, along with their gonaiblo and usual
ranges, in the first thrse columns of Table 9. \It seemed reasonable to
map the usual ranges shown in column three of Table 9 to the range
[~5,5]}. However, the performance of the CMMCA needed to lmp:ov- at two
places: as the CM approached approximately 30 to 45 degrees of azimuth
at t_now, and during the time the CM was flying straight and level
following a large turn.

The first performance problem was becausga ﬁh- CMMCA coffaet away

from the CM for turning room and consequently the current azimuth
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Table 9 The Furzy Logic Pactors and Thelr Ranges

Lt s T ——— |
Pactor Possible Usual Mapped
Range Range Range
e RPN

t now azimuth (degrees) [-180,180} [~60,60] [~-€0,60]
t now HCA (degrees) [-180,180]) [-180,180) | (-135,135]

t now range (nm) 10,infinity} (5,15} [5,15])
t next azimuth (degrees) {-180,180) {-180,180] [~60,60}
It next HCA (degrees) ‘ [-180,180) (-180,180] | [-180,180)

apprcached the limit. Ths net bank logic gave too much weight to the
t_next input and continued to offset the CMMCA untli too late. At that
point the CMMCA could not turn fast enough to keep from loaing radar
contact with the CH. ‘

The second problem was at the end of the CM's maneuvering. The
CMMCA would finish its turn and end with an HCA of epproximately 25-35
degrees. Then it would continue to diverge from the CM's heading until
the azimuth limits were approaching. This divergence also meant that
the CMMCA was not driving towards a position from where it would be
properly set up for the next maneuver.

The solution to both of thess problgmn was accomplished by
changing both the mappings to the scaled range and by re-defining the
fuzszy set membership functions. The new mappings amounted to changing
two factors from their usual ranges, the t_now HCA and t_next azimuth.
Reducing the mapped range of t_now HCA reflected the need to react more
to current HCA than was being done, while reducing the t_next azimuth
range kept the CMMCA from turning too far during its offsst marsuver.

Instead of changing the mappings and the set membership functions,
the same results could have probably been accomplished by modifving the
fuzzy logic rules. However, the former changes seemed the most
expedient and straight forward, while retaining the intuitive nature of
the fuszy logic. Changing the logic rules would have required losing

those advantages to force the same ocutcome.
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the fuzzy logic. Changing the logic rules would have required losing

those advantagen to force the same outcome.

The finai factor ranges are shown in the last column of Table 9.
Any values that exceed these ranges (such as a t_next azimuth of 80
degrees) are simply truncated to 15 during the mapping. The final fuzzy
set membership functions are shown in Figure 22. The major change is a
large expansion in the size of the set "ZR." This has a two-fold ‘
effect: t_nbw maneuvering is only performed as noceilary, and th§ CMMCA

terminates its offset steering after only a small turn away from the CM. .

Set .
Membership -~ Membership functions from the litcrature
Level ~—  Finsi form of sst mambership functions

/

SN ZR SP LP

Scaled Analog Velise

Pigure 22 The Fuzzy set Msmbership Functions in Their Final Porm

»
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V. Results

5.1 Iatroductioa

. This chapter presents the results obtained from fourteen
simulation runs. The first section steps through the runs, with a
discussion ot what was varied tc improve the simulation. The last
section contains information on the simulation run times, and some ways

to improve them.

5.2 Results .

| The results for simclation runs during the testing and tuning of -
the fuzzy logic (as discussed previously) can be seen in Table 10. The
results in Table 10 are listed in the chronological order that the
simulations were run, which represents an evolution of the set point
fuzgzy logic. Within each row of Table 10, cnly the look ahead time was
changed, while from one row to the next, either the fuxzy logic rules or
the set merbership tunctioql were changed. Appendix A contains plots of
these simulation results. Appendix B contains a small, randomly |
selected sample of the ocutput data produced during simulation Run #7c
from time t = 1234 seconds to t = 1278 seconds.

5.2.1 Run #1, t_ahead = 90, 120; The results of Row #1 woro_aﬂﬁ
especially good. The problem arose early when the CMMCA offget " the
left, turning too far and maintaining a diverging heading for " »:. .ong.
Both maximum range and maximum right azimuth were exceeded for long
periods.

5.2.2 Run #2, t_ahead = 60, 90, 120. The radar range problem was
aggressively attacked on two fronts: by rescaling the mapping from
actual rangs to the scaled range [-5,5]), and by changing the fuszzy logic
for t_now commanded bank using radar range as an input.

The new range mapoing meant that the range became fully LN or LP
as the range reached the buffer region (greater than 14 nm or less than
6 nm). The new range/turn direction component logic gave more weight to
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Table 10 Results for Trial Simulations Using Various Combinations of
Fuzzy Logic and Look Ahead Times

Profile Limit Look Ahead Time '
s (percent ng :hmfe fx;!om’

CM bank within) 60 90 120 revious Ror.
range £7.6 69.1

A & 20° { azimuth 70.3 74.9 (1) n/a
elevation 100.0 74.9 -
range 100.0 |100.0 |100.0 map of radar

A & 20° | azimuth 83.5 84.4 85.8 {(2) § range to [-5,5];
elevation 100.0 {100.0 {100.0 range logic
range 100.0 _

A & 20° | azimuth 84.2 (3) | ®e¢ membership
elevation 100.0
range 100.0

A& 20° | azimuth 87.1 : (4) turn offaat
elevation { 100.0 : °9
range 1 100.0

B & 20° | azimuth 8l1.2 {5) none
alevation 100.0
range 100.0 turn offset

A & 20° | azimuth 100.0 ' (6) logic;
elevation 100.0 scaling;
range 100.0 |1c0.0 | 100.0

C & 20° | azimuth $0.3 93.0 ]100.90 (7) none

e;evatiop |

range

azimuth i
elevation |

radar range as it approached its limits than in the previous

formulation. In particular, a ranne of either i¥ ) LP now resulted in

a large output bank from this logic component. %h: t_now and the net
(t_now vs t_next) combining logic were also modified to give more weight
to any t_now component or combined LN or LP bank angle. The improvement
was immediate and cbvious, as shown in Row #2. For all subsequent
trials with the CM at 20 degrees of bank the range limits were never
violated.

New HCA scaling was also used to keep the CMMCA from turning too -
far left and to turn back towarda the CM when necessary. A ten percent

improvement across all look ahead times was noted, although the naw

72




range logic may have contributed as much to the azimuth improvement as
the aszimuth logic itself, by forcing the CMMCA to turn towards the CH as
saximun range was approached.

A foreshadowing of future problems was also seen at ¢he end of the
simulation (see e.g., page 81, Appendix A). For all three lock ahead
times, the CMNCA ends the simulation with 3 large heading away from the
C and no attempt to corrocﬁ back. This could potentially degrade the
CMMCA performance if the CX wers to make another turn.

Nowever, since the CX flight patk has ended, the heading
divergence may simply be an end effect. A possible solution would be to
artificially extend the CM's path in a straight line beyond its final
position for a distance equal to the look ahead time. This would
provide a virtunl #1ight path for the CMMCA and bring it to a more
reasonable final trajectory. ,

8.2.3 Run #3, t_ahead = 60. Row #3 shows the result of changing
the set membership fuactions for the purpose of decreasing the CMMCA
offset and improving the azimuth problem. Only the functions for LN and
LP were changed; they were shifted clightly to force earlier moveaent
into those sets. This change did rot have much effect. While the
asimuth limit error had the same value, the CMMCA actually offset _
earlier, more, and longer. It did turn back more about midway through
the turn, and almost eliminated the heading divergence at end game.

8.2.¢4 Run #4, t_ahead = 60. Row #4 represents a logic change to
stop the msount and length of the CMMCA's offset away from the CN. The
change was po\tfor-.d exclusively to the t_now combining lcgic, and made
the twn oo-po;unt- approximately equal in weight when combined. This
was partially \unccoutul. The CMNCA did not offset excecsively this
time, llthouqh\ it was otill slow to turn back towards the CN as the
asimuth limit was exceeded. Also, the CQWICA 4id not offset until fairly
late, thus it not bulld turning room sarly. While this was due
partly to the small look ahesd value of only 60 seconds in this

n i




simulation run, more likely the continuing problems were because of a
errors introduced into the logic ruleas by mistake in this run.

5.2.5 Run #5, t_ahead = 60. The logic rule error was corrected.
Because the offset and end g#mo problems had been reduced both
quantitatively and qualitatively, and because of the effect of the small
look ahead time on the offsat, the CMMCA was run through the much more
complicated profile B of tﬁo linked 270 degrees turns (Row #5).

Analysis of the results showed two problems. First, the CMMCA was not
offsetting early enough (look ahead time, again) and then turning too
far and too long. Second, and of major importance, the CMMCA was
failing to offset propesly following the first CM turn as the C¥ entered
its second turn.

5.2.6 Run #6, t_ahead = §0. Row #6 shows the results following a

change to all three factora. The ranga mapping was changsd back to the

original, where the scaling was fully reached at fire and fifteen miles,
not at the buffer boundaries. This effect would be better captured in
the logic ruion. The t_now combining logic was updated to do this.

The turn loglic was reexamined and changsed to end the excessive
offeet by the CMMCA that was causing the azimuth limit to be exceedsd
early in the profile. The t_now logic was modified slightly to increase
the respcnse to azimuths approaching the limits. The t_next furzy logic
was changed significantly, in that no t_next onutputs were allowed to be
1M or LP. These changes forced the CMMCA to reipond less to t_next ‘
outputs. Hence the CMMCA would still offset, but on a smaller mcals,
not turning away from the CM as much, and much more responsive to the
need to turn back. Thess same changes allowed tho CMMCA to create an
offset for the next maneuver after completing the previous maneuver.
Thus thes CMMCA should now take better heed of CN mansuvers to set itself
up prior to the CM going into its next maneuve..

Run #6 shows a large deviation in position and heading at the end

of the run. However, it was again felt that this was due to end effects
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as discussed for Run #2. If this is an end effect, then it should not
cause problems in the transitions between CM maneuvers.

5.2.7 Run #7, t_ahead = 60, 90, 120, Becauss the results of the
'changes made in Run #6 were encouraging on the simple profile, profile C
was tried. The results, as chown in Row #7, demonstrated i further ten
percent improvement in axzimuth results, even at the smallest look ahead
value. As look ahead time increased, corresponding to allowing/forcing
the CMMCA to act chllor, the CMMCA performance improved. A look ahead
time of 120 seconds provided 1008 coverage of the CM throughout the
entire profile. '

5.2.8 Run #3, t_ahead = 6G, 90, 120, As a test, Profile C was
rerun with the CM using 30 degrees of bank in all tuinl (Row #8). This
rocaltéd in a severe fall off in CMMCA performance at all values of look
ahead tims. The degradation was least severe at the smallest look ahead
time of 60 seconds, probabiy dus to tne fact that the CM was turning so
rapidly £hnt the longer look ahead times were not allowing the CMMCA to

respond quickly enough to CM = neuvers.

. 5.3 Computer Run Times
During early stages of the simu ation, prior to incorporation of

the fuszzy logic set point cnlcd;utlonn- the simulation ran much faster
than real time on both the SPARUstation 2 and the PC. The later
simulation efforts were carried out entirely on the PC. At the final

form of the clhulution, including all set pdint calculations, the lylton'

ran at almost exactly half of real time. That is, the shortest profile
{profile A, 442 seconds of simulation time) z n in 1% minutes, while the
longest (profile C, 1850 seconds of simulation time), took slightly over
one hour. See Table 11 for more details.

The simulation run time appeared to be dircctly proportional to
the length of the CM profile. This is a big improvement over the
provious thesis efforts, where run time seemed to increase exponentiaily
with profile length. The run time could be increased several fold by
relativoly minor changes. Pirst, the Matlad eodc'could be better
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Table 11 CM Flight Durations and Simulation Times and Simulation
Slow-Down Performance Ratio

T ————
Simulation "Real"® Simulation Ratio of Run Time to
Run Number Tine Run Time . Real Time
1b ~442.0 861.7 : 1.9:1
1lc 442.0 939.2 2.1:1
2a 442.0 878.6 2.0:1
~ 2b | 442.0 860.4 1.9:1
2c 442.0 888.4 2.0:1
3a 442.0 855.6 1.9:1
4a ‘ 904.0 1774.9 2.0:1
5a 442.0 865.8 2.0:1
6a 1850.0 3500.9 : 1.9:1
7b 1850.0 3548.4 1.9:1
7c ~ 1529.0 2964.2 1.9:1
8a ~1529.0 2868.7 1.9:1
8b 1529.0 2948.7 1.9:1

optimized for speed. Second, converting the M-files to C or FORTRAN
would speed up the simulation. Third, eliminating the unnecassary
output (used for debugging, mostly) would also speed the simulation.
Pinally, using a worksatation instead of a PC would probably speed up the
simulation time by an order of magnitude.

An additional highly important factor affects this simulation as
far as run time is concerned. 8imulation overhead can take up a
significant fraction of the actual CPU time used. To Qquate simulation
run time, therefore, to the actual speed of an onboard aircraft
autopilot would be seriously misleading. The onboard system would
receive a real time data stream consisting of the CMMCA's inertial
position, velocity, euler angles, radar range and gimbal angles, etc.
The simulation's computation of these values would be eliminated,

resulting in a huge reduction in the number of computations.
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VI. Conclusions and Recommendations

6.1 Conclusions ‘
This thesis has shown that the CNACA tracking problem can be

lolvgd in ninrly real time. With improvements to the computer code, as
discussed in section 5.3, the simulation should be easily implementable
in better than real time. -

The new approaches to the CMMCA tracking problem taken in this
thesis show good results and great promise. The keys t» this approach
were three-fold: 1) accept CN positions anywhere in the radar envelope
instead of always forcing the CM back to the nominal desired position;
2) break the tracking into a series of short tracking solutions,
changing every FTUT seconds; and 3) use fuzzy 16910 to compute the next
-ot'polnt.

Fuzzy logic succeeded because of a number of factors. It allowed
an accurate identification of the problem and used workable anut-outfut
relations (i.e., HCA, azimuth, etc.). 'rho analog to scale mnpﬁlnﬁu and
the set membership functions were also workable and proper. |
Interrelationships between all variables remained consistent throughout
the fuszy logic dov.lopmonﬁ. Finally, the logic rule tables were kept
snall and simple, ensuring that they remained clear, intuitive, and easy
to modify. _ . . o IO

This is not to say that no improvements are possible. Different
or additional variables should be considered, along with different
values of FTUT. The shape and position of the fuzzy set membership
functions and the mappings from analog to scaled valuce are also likely
candidates for change and improvement. All these factors had a
significant impact on the CMMCA flight path, and consequently on tha CM
radar coverage provided. :

The results in the last two rows of Table 10 shuw the changes that
occur as the look ahead time is varied. It is not clear what value is
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best; an experienced pilot sub-congciously uses many look ah: Jimes,

up to several minutes in the futurg. Therefore, it seems reai .\ %le to
believe that instead oflone optimal look ahead time, significant
improvement would occur if multiple lock ahead times were incorpo ted,
perhaps based on CM maneuvers, but more appropriately within the fu .v
logic decision tablas themselves. | ' |

There are at least two consequences of the fact that the true
paramster values were not used: 1) the true values will need to be found
and input for actual implementation in autopilot form; 2) the results
may be biased in some unknown direction, or may differ in a‘zandom
fashion from truth. Hence the simulation will need to be closely
scrutinized following the incorporation of these trus parameter values.

The penalty function and dynamic programming approaches to this
problem suffer from major difficulties that have bean eliminated here.
The solution time varises directly with profile length, not
exponentially. This is because the former approaches used iterative
methods seeking solution convergence. This method does not lterate, so

does not have problems caused by failure of the solutions to converge.

6.2 Recomzendations _
6.2.1 Program Input. The input method consisted of an ASCII file

of circular and straight iogmanta. The 7 was assumad to be in constant
bank while turning and to have constant airspeed. A user friendly,
efficient fiight path dsta input method is reeded, based on the actual
information provided to ﬁho aircrews. Empha3sis must be placed on making
both the data entry and esimulation results simple, quick and Lntuit;v.;
if not, then aircrews will not use this program.

6.2.2 rFussy Logic. The furzzy logic developed in this thesis
works well for C¥ profiles at small bank angles. However, the solution
breaks down as the CH bank increascs. As discussed above, the fuszy
logic needs to be sxpanded to several look ahead times. A reasonable
approach might be tc¢ use 60 and 90 seconds or 60, 90, and 120 eeconds;

further experimentation should provide guidance.
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A second means of improving the furey logic would be to change the

mapping from the analog to the scaled [-5,5) values. Also, changing the
locations of the fuzrzy set moﬁberlhip functions, or perhaps adding two
more functions for Medium Positive (MP) and Medium Negative (MN) might
belp.

6.2.3 CNNCA Performance. The CMMCA had no problem tracking the
'CM when the CM maintained a constant airspeed. However, the furzy logic
should be modified to allow the CMMCA to change speed, but still attempt
to keep speed changes amall. 8Since turn radius depende on the square of
the speed, relatively amall changes in speed might greatly increase the
CMMCA's ability to track the CM. | | |

One other problem occurred with the CMMCA turn performance. The
CMMCA bank angle acceslerations were occasionally very 6-c111atcry,
usually when the set poiat commanded bank angle was near zero. As soon
as the CMMCA turned slightly, the command would reverse direction (seo'
the discussion in section 2.6.4). This could be overcome by either a
second set of fuzzy logic tables, or by limiting the CMMCA's maximum
bank angle or bank angle acceleration when near the desired state.

This theais used a model with no noise present. Adding noise,
especially to the range and angles supplied by the radar, would greatly
increase the realism of the simulation.

6.2.4 BSimulation Times. The values of sample time (1 second),
FTUT (10 seconds) and look ahead time (60, 90, or 120 seconds) were
chosen for convenience and because they seemed about the right size.
There is no reason to believe that other values might not work better;
additional effort should go into an examination of different simulation

times.
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Appendix A: Plots of Simulation Output

Bach figure is a plot of the CM and CMMCA ground track over the
entira simulation fun time. In addition, a line is drawn at interyals
of 60 seconds from the CMMCA to the CM. This aids in interpreting the

plot, and also graphically demonstrates the rangs and azimuth at one

minute intervals.

The aymbology on each graph is the same:

CMMCA ground track: solid line;
"o" marks the CMMCA position every 60 seconds

CM ground track: dot-dashed line;
"x" marks the CM position every 60 seconds

Line of sight from CMMCA to CM: dotted line;
shown every 60 seconds
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bytes.

- Appendix B: Numerical Output of the Simulation

The full output from one simulation run of profile é is 326X

Because the amount of data is immense, ounly a small,

representative sample of the output for.Rnn #7c is presented here.

Sample of the CM states:

Time

1234
1235
1236
1237
1238
1239
1240
1241
1242
-1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
izs8
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
i275
1276
1277
1278

X
267911.17
267235.15
266559.53
265884.51
265210.29
264537.08
263865.07
263194.48
262525.50
261C58.34
261192.84
260527.67
259862.50
259197.33
258532.16
257866.99
257201.82
256536.65
255871.48
255206.31
254541.14
253875.97
253210.80
252545.63
251880.46
251215.29
250550.12
249884.95
249219.78
248554.61
247889.44
247224.27
246559.10
245893.93
245228.76
244563.59
243898.42
243233.25
242568.08
241902.91
241237.74
240572.57
239907.49
239242.23
238577.06

Position
Y

-208467.09
-208448.58
-208418.37
-208376.46
-208322.85
-208257.52
-208180.49
-208091.74
-207991.27
-207879.07
-207757.10
-207633.17
-207509.25
-207385.32
-207261.40
-207137.47
-207013.58
-206889.62
-206765.70
-206641.77
~206517.85
-206393.392
-206270.00
-206146.07
-206022.15%
-205898.22
-205774.30
-205650.37
-205526.45
-205402.52
-205278.60
-205154.67
-205030.75
~204506.82
-204782.90
-204658.97
-204535.05
=-204421.12
-204287.20
-204163.27
-204039.35
-203915.42
-203791.50
~-203€667.57
-203543.64

z
~1000.00
-1000.00
-1000.00
-1000.00
-1000.00
~1000.00
-1000.00
-1000.00
=1000.00
=1000.00
~1000.00
-1000.00
-1000.00
-1000.00
-1000.00
-1000.00
-1G600.00
=~1000.00
-1000.00
-~1000.00
~1000.00
=1000.00
~10600.00
=100C.00
=1000.00
-1000.00
-1000.00
~1000.00
-1000.00
=10006.00
=1000.00
-1000.00
-1000.00
-1000.00
=1000.0C
-1000.00
=1000.00
-1000.00
=1000.00
-1000.00
-1000.00
-1000.00
-1000.00
=1000.00
-1000.00

0.00

X
-675.85
-675.35
-674.65
-673.75
-672.64
-671.33
-669.82
-668.10
-666.18
-665.17
-665.17
-665.17
=-665.17
~565.17
~665.17
~665.17
-665.17
-665.17
-665.17
-665.17
~665.17
-665.17
-665.17
-665.17
-665.17
-665.17
~865.17
-665.17
-665.17
-665.17
~665.17
-665.17
-665.17
-665.17
=665.17
-665.17
-665.17
-665.17
~665.17
-665.17
-665.17
~665.27
~665.17

Velocity
Y

12.66

24.36

36.06

47.76

59.47

71.18

82.89

94.61
106.33
118.06
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93
123.93

0.00
0.00
0.00
¢.00
G.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

. 0.00
- 0.00

0.00

0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
G.00

Roll
Rate
0.00
0.6
0.00
0.00
0.00
0.00
0.00
0.00
0.C0
0.00
0.00
0.00
0.00
¢.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
o.oo




Sample of the

Time

1234
1235
1236
1237
1238
1239
1240

- L2411

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
12£3
1254
1285
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280

b ¢
304282.98
304258.84
304216.10
304154.82
304075.06
303976.89
303860.38
303725.66
303573.21
303403.70
303217.32
303014.00
302793.65
302556.19
302301.61
302029.99
301742.47
301436.23

301114.50

300776.53
300422.57
300052.91
299667.83
299267.62
2%3852.59
298423.06
297979.36
297521.81
297050.85
296567.02
296070.73
295562.30
295042.02
294510.21
293967.22
293413.42
292849.20
292274.99
291691.24
291098.60
290498.14
289891.12
289278.93
288662.93
288044.48
287424.94
286805.69

CMMCA states:

Position
Y

~-178146.17
-178820.82
=179494.54
-180166.83
~-180837.18
-181505.08
~182170.03
-182831.53
-183489.17
-184142.62
-184791.46
-185435.29
-186073.30
-186705.24
«187330.47
-187948.50
-138558.81
-189160.94
-189754.42
=190338.80
~190913.65
-191478.52
~192032.99
~192576.65
=193109.08
«193629.88
-194138.66
=194635.03
-195118.68
=195589.47
-196047.10
-196491.20
=196921.37
-197337.20
-197738.31
-198124.36
=138495.02
=198850.00
~199183.05
-199512.34
-199820.85
=-200116.28
-~200400.83
-200677.04
-200947.74
-201215.93
-201484.80

2
-29000.C0
-29000.00
-29000.00
~29000.00
=29000.00
=29001.00
=-29000.00
=29000.00
-29000.00
-29000.00
-29000.00
-29000.00
-29000.00
-29000.00
~29€00.00
~29000.00
-29000.00
-29000.00
=29000.00
-29000.00
-29000.00
=29000.00
-29000.00
-29000.00
~29000.09
-29000.00
-29000.00
-29000.00
-29000.00
-29000.00
=-29000.00
=29000.00
-29000.00
-29000.00
-2 «00.00
-29000.00
-29000.00
=29000.00
=29000.00
-29000.00
-29000.00
=29000.00
=-29000.00
~29000.00
-2%000.00
-29000.00
=29000.00

BLak
Angle
-30.13
-30.05
-30.00
-29.98
-29.98
-29.98
-29.40
~-28.56
-28.49
-28.76
-29.13
-29.47
-29.73
-29.89
-29.99
~30.03
-30.04
-30.04
-30.03
-30.02
=30.01
~30.01
~30.00
-30.00
-30.00
=30.00
-29.92
-29.45
-29.35
-29.15
-29.75
-29.86
-29.94
-29.59
-30.01
-30.02
~29.44
-27.82
-24.50
=20.57
-15.91
"10'- 64
-4'88
1.29
7.79
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X
-14.81
=-33.45
-52.02
-70.53
-88.97

=107.38
-125.65
-143.73
-161.04
-177.95
-194.83
-211.81
-228.90
~-246.03
=263.12
-280.10
-296.91
-313.52
-329.89
=-346.01
~-361.86
-377.42
-392.70
~-407.67
~422.33
=436.67
-450.68
~464.35
-477.48
-450.12
-502.41
-514.41
-526.10
-537.46
-548.46
-559.08
-569.28
=579.07
~588,35
~596.75
-603.96
-609.83
~-614.33
~617.45
-619.22
-619.63
~-618.61

Velocity
Y
-674.94
-674.27
~673.09
-671.40
-669.,21
~666.51
-663.30
-659 . 62
-655.6"
-651.2%
-646.37
=-641.01
-635,11
-628.67
-621.71
-614.25
~606.30
-597.88
-589.01
-579.69
-569.93
-559.74
-£49.13
-£38.11
-526,68
-514.85
-502.64
-450.04
-477.26
-464.27
-450.93
-437.29
-423.06
-408.53

-393.64

-378.41
-352.87
=347.05
-331.07
-315.67
-301.64
-289.59
-279.93
-268.93
-267.99
-270.32

0000000000000 DO

OCO00J0000000NDO0O000O000VDO0O000O0O0O0O0O0O0PNOOOO0OCOdOD
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00000000000 COOD0O
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00000000000 DOO0O0O0O

CO0O00000000OOO0O000O0

.

OOOOOOOOO'OO

(=]

CO000000O0O0DO0OOC

L] . [ ]
Q0000
[=Re R )]

Roll
Rate
0.10
0.06
0.03
0.01
0.00
0.00
—0001
1.40
0.37
-0.15
-0. 35
-0.37
-0.30
-0.21
-0.13
-0.07
-0.03
0.00
0.01
0.01
0.01
0.01
0.00
0.00
0.0C0
0.00
0.00
0.74
0.24
-0.02
-0.14
-0.16
-0.13
=-0.10 .
-0.06
-0003
-0.01
0.00
1.29
2.51
3.50
4.32
4.99
5.53
5.93
6.35
6.65




Sample of the CMMCA euler angles:

Time
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1248
1246
1247
1248
1249
1250
1251
1252
12583
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280

Heading
268.74
267.16
265.53
264.C0

262.43

260.85
259.27
257.71
256.20
254.72
253.23
251.71
250.18
248.63
247.06
245.49
243.91
242.33
240.7¢
239.17
237.59
236.C1
234.43
232.85
231.27
229.70
228.12
226.54
224.99
223.45
221.91
220.36
218.80
217.24
215.67
214.09
212.51
210.94
209.37
207.88
206.54
205.40
204.50
203.85
203.48
203.33
203.60

0.00

~ 0.00

Bank
-30.13
-30.05
-30.00
~29.98
-29.58
-29.98
-29.98
-29.40
-28.49
-28.76

'=29.13

-29.47
-29.73
-29.89
-30.03
-30.04
=-30.04
~30.03
-3¢.02
-30.01
-30.01
-30.00
-30.00
=30.00
-30.00
-29.92
-29.45
-29,35
-29.60
-29.94
-29.99
-30.01
-29.44
-24.50
=20.57
-15.91
-10.64
-4.88
1.29
7.79




gample of the CMMCA to CM range and radar gimbal anglas:

Time Range Azimuth Elevation
1234 55011.51 -55.30 -6.57
1238 55068.66 -54.93 -6.73
1236 55123.54 -54.55 -6.86
1237 55176.08 -54.18 -6.98
1238 55226.19 -53.80 ~7.09
. 1239 55273.79 -53,.42 -7.19
1240 55318.79 -53.03 -7.30
1241 §5361.13 ~52.60 ~7.88
1242 55400.97 -52.18 -8.65
1243 55438.58 - =51,84 -8.80
1244 55475.02 ~51.53 -8.68
1245 55514.31 -51.19 -8.50
1246 55557,03 -50.82 -8.36
1247 55602.67 -50.42 -8.39
1248 55650.76 -49.97 -8.32
1249 55700.88 ~-49.50 -8.41
1250 55752.65 -49.01 -8.54
1251 556C5.72 -48.50 -8.71
1252 55859.78 -47.97 -8.90
1253 55914.50 -47.42 -9.10
1254 55969.51 -46.85 -9,30
1255 56024.81 -46.29 -9.52
1256 56079.83 -45.70 -9.74
1257 56134.42 -45,.09 -9,.98
1258 56183.33 -44.47 ~10.22
12%9 56241.27 -43.84 ~-10.47
1260 56293.17 =-43.19 «13.73
1261 56342.66 -52.51 -11.05
1262 5€392.67 -4:.78 -11,64
1263 $6440.12 -41.10 -11.93
1264 56485.90 -40.42 -12.20
1268 56529.82 -39.76 -12.41
1266 56571.68 -39.06 ~-12.63
1267 56611.33 ~38.34 ~12.90
1268 56648,.60 ~-37.59 -13.20
1269 56683.39 -36.82 -:3.54
1270 56715.62 -36.02 -13.91
1271 56745.21 -35.21 -14.30 -
- 1272 56772.14 -34.27 ~-15.04
1273 56736.54 -33.03 -16.47
1274 56818.86 -31.54 -18,.38
127% 56839.72 -29.79 -20,59
1276 56859.87 -27.77 -22.94
1277 56880.12 -25,48 -25.33
1278 56901.35 -22.94 -27.67
1279 55924.50 -20.15 -29.92
1280 56950.60 -17.13 -32,03
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Appendix (  .tlab M-files Used Prior to the Simulation

This appandix containa the lietings for all the M~files used

before the simulation can be run. These files include the €M flight

path gereration files and the simulation set up files.
The flight path generation files are:

1. GEN_SAV.M

2.
3.
‘.

CMGND .M
CMCIR. M
CMILINE. M

"GEN_SAV.M" is run with an input ASCII fils as described in Chapter 3.
It calls thae other thrge files, and outputs a ".sav" file containing all
the information on the CM's ground track, acceleratiors, headings and

bank angles needel in the simulation.

1.
2.
3.
4.
s.

"RUNMB.X" is# the top lavel, menu driven file.
the choice of CM profiles and the desired 1look ahead time.

The simulation setuy files are:

RUNME.M
RUNSIM.M
CMCASYS.M
CHSYE.M
SIMGAIN.M

It queries the user for

The output

of these files is the optimal control gains, CM and CHMCA atate
matrices, and numerous global constants. At this point, the simulation

is ready to be run from inside Simulink.

Some Matlab charactors:

]
’ - used at end of lina to prevent Matlab from printing the results of
that line (to the screan);
also ends rows within a natrix
“ = exponentiation
am, <, >, <n,>n - logical opsrators
{,) = delineate matrices and vectors _

+es = current line is to continued on next line

- comnent character, remainder of line is ignored

- patrix transpose;
stcTt/end of text string

- used to creace a vector with default spacing of one;
®.G., D = 114 creaces the vector D =~ [1 2 3 4]
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GEN SBAV.M
24 Jan 93
Randy Nelson

Top level M file in computing and saving ".sav" files for use
by "runsim.m”

Usass "cugnd.m,” "apec_den.m,"” and "time_fuz.m"
Currently calls: “"cm.dat,” "cmshort.dat® and "cmlong.dat"

Ouvtput is a numbe:r (three as of now) of ".sav" files containing:
n x 5 matrix of CM accelerations (U),
n x 4 matrix of CM headin¢a, x-y positions and sign(bank) (cm_hpb),
and n a 3 matrix of update, reset and look ahead times (furzy "~ ime)

NOTZ: if you want to prepare a single data file for use by the simulation,
run "cmgnd.m" on the ".dat” file and then run "time_fuz.m"
on those results (remember, no arguments to either)

[ A A X XX EEFREEEFEEEFE]

§ weaes Jigt Of files to use for possible llmulation rung wwees

file list = |

*~ pathl';
path3' ]y

' pathd';

* pathd_30' |3

sxwns Dafine some global variables here (outsida of "runsim.m™) wan=xs
global start_step look_ahead fuzzy time U cm_hpk max_ftut max_reset
start_stap = 10; % do a psd every 10 seconds
num froqn = 32; S divide spectrum into 32 frequencies
max “ftut = 10; § Max dulta ftut
max_ “reget = max _ftut) $ Max delta reset time <= max delta ftut

for row = 1:pize(file list)
fnameindex = find(flle list(row,:)=' *');
fname = file list(row,fnameindex);
{U,cm _hpb] = “emgnd (2, fname) F; % use all input files in turn
fuzzy time = Lire _fuz;
eval({'save ' fname '.sav U cm_hpb fuzzy time']);
end; 8 for row = lisize(file list)
clear;

return;
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function [accels,cm numa] = cmgnd(Flag,fname)
: , CMGND .M
CMMCA f£light path generator 24 Jan 93
Randy Nelison
Top level M file in generation of flight pathsa.
Uses files cmcir.m and cmline.m for arcing and straight line
portions of the flight path.

Input: flag is used to skip portions of "cngnd.m"
Flag = 0 => from user at kbd (do all, don't save output)
Flag = 1 => from "pwr _max.m" (skip plots, filename req, cm nums)
Flag = 2 => from gen sav.m" (skip plots filenama reg)
fname is used with "pwr_max.m" and "gen_sav.m"

Output is a matrix of x and y second derivatives (accels),
and n x 4 matrix of CM heading, inertjal x & y positions
and the sign of the CM bank angle (cm_nums)
throughout CM flight time (at one second intervals)

Pormat of input data:
id value

whers
/ +1 for a Right Turn

id is < -1 for a Left Turn
\ O for a straight segmant, and
value is # degrens to turn, or
# feet to proceed in straight leg

Flight begine at origin, heading North at 400 kts.
in keeping with (the bizarre) tradition that X is North,
Y is RBast, and Z is down.

OOO"OOOOOOO"OOOOO"OO"'OOOOO

% Set up constants and variables

nm = 6076; { % conversion factor

maxBank = 20*pi/180; J $ CM's max bank angle

velocity = 400*nm/3600; % CM and CMMCA's speed in ft/sac

radiuaCM = velocity*2/(32. 2*tan(max8ank))) $ CM's nominal turn radius

heading = 0; % initially heading North

position = [O 0); J $ initially at origin

timestep = 1; $ delta t, in seconds

pathstep = (velocity * timostep); $ feet per time step

pathoffget = 0; $% correct for path pts not exactly
s at end of segment

pathplace = 0; $ position at start of each segment

xy = (13 § 2xn array of flt path positionas

xy2nd = {]s S 2xn array of second derivativas

timepts = {]; S 1lxn array of discrete time pts

§ sevwn Got file with CM flight path data *#awsw
if (Flag == 0)
fname = anut(['ﬂhat is the name of the CM flight path data file?' 10 ...
(".dat” will be appended] °'},'s');
end; 8 if (Flag == 0)
disp({'Loading data file ' fname '.dat'});
eval({'load ' fname '.dat'});

fname=eval(eval('fname'));
(segs,DC}] = size(fname); S segs is # flight path segments

Sdisp 'Working ...')
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.for seg = lisogs 8§ one loop for each segmant
§ Pirst divide segment into digcrete points by dividing the

] segment path length by the distance flown ir delts t seconds.
if fname(seg,l) == O,
seg_length = fname(seqg,2); : S length for strajght leg
else

seg_length = pi/lBO'radiuscu*fname(log,2)} % length for turning leg
end; 8 if fname{seqg,l) == 0
path_len = geg_length - pathoffset; S reduce length by offset into seg
numbstep = fix(path_len/pathstep); S number of steps in this leg
round_len = numbstep*pathstep; § length of integral # of steps
pathpts = ([O:numbstep)*pathstep)'; S points along path segment; nxl
pathpts = (pathplace)*ones(pathpts) + pathpts; S add offset

if fname(saeg,l) == 0 S a straight leg

[heading,position,seg_xy,seg_xy2nd] = ...
cmline(fnanae(seg,2), heading,position,pathptn,pathoffaat):
else
{heading,position,seg_xy,seg_xy2nd] = ...
cmeir (£name(seg,l), fname(sag,2),heading, ...
position,pathpts,pathoffset,radiusCM,velocity);

ond; % if fname(seg,l) == 0

= [{xy; seg xyl} % augment xy with new piece
xyznd = [xy2nd; seg_xy2nd); S augment xy2nd with new piece
timepts = [timepts; pathpts); S same for timepts .
pathplace = pathstep+pathpts(length(pathpts)); A\ set new starting pt
pathoffset = path len - round len; ) what's left over
|

end; 8 for seg = lisegs |

N awnee array of [time, x, y, 2z, bank angle; same~dot~dot] w#was
accels = [timapts/velocity xy2nd zeros(length(timepts),2)];

s @Qeeee

t #wane |f in "cmgnd.m™ from "pwr max.m" function call, exit hera «#*ww
S egeeee ‘

if (FPlag == 1) |
‘Teturn; § accels is all that's needed

end; 8 if (Flag == 1)

§ ew*ex Compute CM heading, inertial position and signum(bank angle) *r#*##

N at one second intervals throughout f£light

vel = diff(xy); % velocity approx delta position (in 1 sec)

vel = [675.11 O0; vel};
hdg = rem(2*pi + atan2(vel(:,2),vel(:,1)),2*pi)) % in range {0,2*pi}

% cm bank angle: ~1,0 or 1 for left turn, no turn or right turn

w = length(hdg); % number of time points in CM heading/position matrix
bank = gzeros(w,1l);
for i = 2:w-1 % in middle of matrix

bank(i) = hdg(i+l,1)-hdg(i-1,1);

end; & for i = 23w-1
bank(l) = hdg(3) - hdg(l); $ at beginning of matrix
bank(w) = hdg(w) - hdg(w=2); % at end of matrix
§ account for heading change of 360 degrees as CM passos thru North
bank = (abs(bank) > .17) .* sign(bank) * (-2*91) + bank;
b::ﬁ = (abs(bank) >= .0017) .* bank; $ any change < .l degrees is no
change
bank = sign(bank);

em nums = {hdg xy bank);
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s ¢eeaee
§ #w%ex {f in "cmgnd.m" “rom "gen_sav" functicn call, just exit here
Vv fQedesd
it (Plag == 2)

raturn;

end; % if (Plag == 2)

$ don't nead plots

L ] ttt*tiﬁ*i**ﬁ*ttQ****ﬂt'tt*t**Q*ttilttt*t'tttttt**.tQti'tttttt*tit*t*ttﬁ
] Provide plots of Cruise Misaile flight path data, if desired: hd

QS PR RAR AR R RN A N AN AR N AAN RN AN RN T AR AR RN AR R AR RAN R RNNRRNARARA R RARNRNNCARR

input('Do you want 2 plot of the second derivatives <Y|N>?*','s')}
if (anp == 'Y') | (ans == 'y')
£ = max(max(xy2nd)) .* ones(timapts);
clg;
disp('Plot of lecond derivatives of x & y vs time.')
subplot(211);
plot(timepts,xy2nd(:,1),':q’',timepts,{z -2});
title('X Acceleration (inertizl) of Cruise Missile')
subplot (212);
plot(timepts,xyznd(:,z),':r',timeptl,[z -2))}
title('Y Acceleration (inertial) of Cruiua Missile')
xlubel('Time from Start (sac)')
ylabel (' Acceleration (feet/ssc/sec)')

end; & if (ans == Y)

input( Do you want a plot of the tlight path <Y|N>?','s');
shg;
if (ans == 'Y') | (ans == 'y’)
clg;
plot(xy(s,2),xy(:,1),"'~w')shold on;
for jj = 10:10:length(timepts)
plot(xy(J3,2),xy(3j,1),'*w')
end;
plot(xy(1,2),xy(1,1),'*g')s
plot(xy(length(xy).,2),xy!{length(xy),1),'*r')hold off;
title('rlight Path of Cruise Missile')
xlabel('Y distance (feet)')
ylabel('X distance (feat)')
end; 8 if (ans == Y)

return;g
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functlion (finalHDG,finalPOS,seg_xy,seqg_xy2nd] = ...

cmeir (turndbIR, turnANGLR, initBDG, initPOS, pathpts, pOFF, radius, vel)
CMCIR.M

24 Jan 93
Randy Nelson

Purpose: generate a cubic smoothing spline with initial position,
initial heading, degrees to turn and turn direction.

Inputs: 4 scalars, an n x 1 vector, 3 scalars
turnDiIR is -1 or +1 for left or vxight turn,
turnANGLE is number of degreas to turn,
initHDG is heading of CM at start of turn,
initPOS is position of CM at start of turn,
pathpts is vector of equally spaced points along tha CM's path,
pUPY 1o first point along this segment's path (since discrete pointn),
radius is CM's turn radius,
and velocity is Ci's speed (constant throughout).

Outputs: 2 scalars, two n x 1 vectors
£inalHDG is heading of CM at end of turn,
£inalHDG is position of CH at end of turn,
seg_xy is vector of x and y inertial poaitions every second,
and seg _xy2nd is vector of x and y accelerationn at one gecond intervals.

Note: pathpts changed internally to n+l points at equal anqular intervals,
with n = 3 + one for every ten degrees of turn.

PO PP PP PP PP PP OPOP PP ORI OS®

$ sst output value and adjust to range (0,360)
finalHDG = rem(initHDG + turnANGLE * turnDIR + 3600,360); '

] Now to parameterize the curve as a pair of functions of g:
| x=x(s) and y=y(s) w/s the discrete angular step.

$ compute values for circular path parameters

tangle = turnANGLE * pi/180; § convert to radians
ihdg = initHDG * pi/180;

ctr=radius* [cos(ihdg+pi/2*turnDIR) sin(ihdg+pi/2*turnDIR)] + initPO8;

if turnDIR == -}, S left turn .
startangle = -ihdg; S using degrees from standard zero .
finalangle = -ihdg + tangle; S same convention

else $ right turn

startangle = pi ~ ihdg;
finalangle = startangle - tangle;

endp

N = fix(turnANGLE/10) + 3; S Number of break points in interval.

i={0:1N]); S 1i=0,1,2,...,N

s = i*tangle/N; S 8 is discrete angular step in radians. :
w = gtartangle - s*turnDIR; S w ig step from start to final angla. ;

] Discretize x(w) and y(w) : 4
xy = [ctr(l)*ones(w)', ctr(2)*ones(w)']' + radius* [sin(w)' cos(w)']'; f
£inalPo8 = [xy(1,N+1) xy(2,N+1)]; S set output value ‘
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] Now fit spline to x(w) and y(w)

Ppx = ceapi(w,xy(1l,1)); % get pp form of spline for x (1 x n matrix)
PPY = csapi(w,xy(2,1)); t get pp form of spline for y

§ Compute 2nd derivative splines of x(t) and y(t)
pp2nd={ fander (ppx,2) ' fnder(ppy,2)']}: $ roeturn an n x 2 matr

$ Values cf points along path converted to angular displacement:

pathpts = (pathpts+(pOFF~-pathpts(l))*ones(pathpts))*(1/radius);
pathpts = (startangle*ones(pathpts) - pathpta*turnDIR);

$ Compute positions along the flight path
seg_xy = [fnval(opx,pathpts')’' fnval(ppy,pathpts’)'];

% Compute values of 2nd derivat!ves along the flight path
seg_xy2nd = (vel”2/radius”2) * ...
[£nval(pp2nd(:,1)',pathpts')' fnval(pp2nd(:,2)',pathpte’)’'};

retura;
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function {£inalHDG, £inalPOS, sag_xy,seg_xy2nd] = ...
cmline(distance, 1nitHDG, initPO3, pathptsa, pOFF)
CMLINE.M

23 Jan 93
Randy Kelson

Purpogse: generate a straight line given the starting point
and the line length.

No default assumptions; need all three values as input:
Pormat is
1. Distance is in feet.
2. initHDG is in compass degrees 0 - 360
(1.0, 0 = North, 90 = Bast, 180 = Scuth and 270 = W).

Now to parameterize the line as a pair of functions
of s: x=x(s) and y=y(s) w/e the discrote stap.

PRSP PSPPI SIIOIS

£inalHDG = initHDG; % set output value
initHDG = initHDG * pi/180; S convert to radians

§ ®+sar Compute end point of line #weaw

K= §; $ Number of break points in interval.
i={0 1], $1i=0,1; start/end of line.

xend = initPOS + distance * [cos(initHDG) sin(initHDG)];

£finalP0O8 = xend; $ set output value

xy = [initPOS' xend'); $ 2x2 matrix of start/end of line

] Now fit spline to x(w) and y(w)

ppx = csapi(i,xy(l,2:)); § get pp form of spline for x

PPy = csapl(i,xy(2,:)); s get pp form of spline for y

§ Compute 2nd derivative splines of x(t) and y(t):

pp2nd=[ fnder(ppx,2)' fndexr(ppy,2)']: $ return an n x 2 matrix

$ Values of points along path converted to [{0:1] parameter
pathptsl = (pathpts+(pOFF-pathpts(l))*ones(pathpts));
pathypts2 = pathptsl/max(pathptsl));

] COmputo positions along the flight path \
seg_xy = [fnval(ppx,pathpts2')' fnval(ppy,pathpts2')'];

S8 Compute values of 2nd derivativas along the flight path
seg_xy2nd = [fnval(pp2nd(:,l1)',pathpts’')' fnval(pp2nd(:,2)°',pathptes’')'];

e

return;
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’ . RUNME.M
' 18 Dec 92
Randy Nelson

o” »»

$ M File to executa simulation
$ Uses saved missile data in ".sav” files from
% “pathl.sav" "path3.sav" "pathd4.sav" "pathd_ 30.sav"

$ Calls runsim to set simulation parameters and ask about a diary output.

clear;cle;

disp([10 'Welcome to the CMMCA simulation system.' 10])
disp([‘'You have the choice of eight preset cruise missile flight paths,' ...

10 'or you may select ons of your own.' 10]) ‘
& 180 degree right tuxn)? <1>® ...

R disp(['Hachman''s profile 1 (path A,

i 10 ‘'Hachman''s profile 3 (path B, 2x 270 degree turns)? <2>' ...
10 'Hachman''s profile 4 (path C, a number of turns)? <3>' ...
<4>' L N 2

- 10 'Hachman''s profile 4 (using 30 degrees of bank)?
10 'Your choice (yocu will need to provide a CM flight profile)? <5>' ...
10 {(or Ctrl-C to exit)'])

bad input = 1;
while bad _input
fnum=input ( 'Make your choice by selecting a number from 1-9, now: ','s');
bad _input = 0;
if (fnum == '1')
file = 'pathl’';
elgoif (fnum == '2°')
file = 'path3‘';
elseif /fnum == '3')
file = 'pathd’;
elsuif (fnum w= '4§’')
file = 'path4_30';
elseif (fnum == '5°')
file = input([10 'Enter the file name containing the flight data.' ...
10 '(A dafault extension of ".sav" is always added.) '}],'s');
if ([file ' '] == ' ') | (exist([file '.sav']) "= 2)
S disp('You didn''t enter a valid name, back to the beginning ...')
o bad_input = 1;
end; 8 if ([file ' '] == ' ') | ...
else

bad_input = 1;
dL-p([lo 'Oops, you''ve selected an invalid choice. Try again.'])

end; 8 if (ans==l)
end; & while bad_input
disp([10 'Well done; "' file '.sav" i@ an excellent choice!'])
disp((10 'Loading data file ' file '.smsav’'])
eval({'load ' file '.sav']);

disp('lLoeding complete. ')
clear bad input fnum file % clean up the work space

analid choice

runsim;

disp([10 'At your leisure, run the simulation.’' 10 °'It will run for ' ...
sprintf('$~3.1f seconds.',tfinal)})

return;
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RUNSIM.M
24 Jan 93
Randy Nelson

M File to exscuts gimulation; calied from “runme.m"
Contains most parameters used in simulation and creates

diary file on request
Rcd = True will print out data for diary

[ A X X X F X EE/4

global Rcd True PFalse vcemca gravity U

global ftut t_reset t_ahocad max ftut max reset look_ahead i
global start step num freqa tfinal tuzzy time

global min_radar_rng max_radar_rng Rng_nominal i
global max_ "left azim max_right_azim max_left elev max right elev ~ 1
global Xcm Xcmca accel lImits vemca min vemea mex Re '
global lim_enable setpoint fuz_enable pexy max cm_hpb

global azi now_wt rng_now wt sim run tim sIm_start time

True = 1; False = 0; .
sin _start time = []; $ storel elapsed time of simulation {
sim run_tIm = 0; '
Rcd = Falae ;

nm = 6076;

gravity = 32.2; S ft/sec/sec
deg2rad = pi/180; .
vemca = 400*6076/3600; $ 400 kts (in ft/sec)

input (' What value of look ahead time do you want to use (65,95 or 125)? ');
t_ahead = ans;

if o

input (' Output data to diary = <Y/N>? ','s') ;

if (ans == 'Y') | (ans == 'y') ‘ . }
Red = True
diery runsim.dat;
diary on;

end

end

disp({10 ‘'There will be a slight delay while the system iu set up.' ...
10 ‘'Please stznd by.']))

Lovmne e €7

et s

] Run CMsys.m to deafins the state matrices
L) An, Bm, Cm, Dm :
] 4
cmays ” 3
) Kun CMCAsys.m to defina the state matrices ' |
L} Acmca, Bemea, Comea, Demeca ‘ i
s :
cmcasys }
1
: Run simgain.m to determine the control system gains (Kc) f
SampleTime = 1; S Discrete sample time ' B }
simgain -
.
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horz _rng = aqrt((1076076)°2 - 2800072); s for 10nm slant range
Initial condition for CM is Xcm

\ Initisl condition for CHMCA is Xcmca

Xem = (horz rng 1000 -10CO O vemea 0 0 0}

Xcmea = | [+] 0 -29000 0 vcmca 0 0 0} !

setpoint = Xcm;
L 9

*awsnasesr SIMULATION PARRMETERS (default values) #awwtass

LK X J

§ *axdv timp parameters Aeans
% Start tims is first element of column 1

[ tstart = U(1,1)
tfinal = U(length(U),1) ; S Final time is last elsment of column 1
ftut = 0; S Pinal time update time
t reset = 0; ’ % Reset time (less than or equal to ftut)
st_ahead = 0; % Look ahead time
max_ftut = 10; S Max delta ftut
max_reset = max _ftut; % Max delta reset tinme <= max delta ftut
look _ahsad = [65 125 185); s vector of 1nok ahead timas
start_stop = 10; % step thru U at this intsrval

S number of freq intervals looked at

num freqs = 32;

$ This a matrix of max psd values for a (very) lorg random CM profile

$ the values were computed in “pwr max.m" and manually importsd here

poexy max = [12.34 23.45 34.56; S max value of 'x' pad
45.67 56.78 67.89; S max value of 'y' psd
12.34 23.45 34.56; S max value of 'x' 95% confidence interval
45.67 56.78 67.89 ); N max value of 'y' 95% confidence intsrval

$ #saxr gimulation parametersg wrnre
tol = le-2 ;
minstep = le-0 ;
maxstep = le+0 ;

max_data_pts = 5000; $ max rows in output to workspace
. . .
§ #atae  CMMCA PARAMETERS ##ass

]

§ w*esew pradar parameters
min radar rng = 5 * nm;

max_ “radar . rng = 15 * nm;
Rng_nominal = 10 * nm;
max_left_azim =-FfD) * deg2rad;
max right azim = 60 * deg2rad;
MAX_( —down_elev =-60 * dag2rad;
max_up_elev = 60 * deg2rad)

S sedrx  yglocity limits weres
vemca_min = 360 *nm;/3600;
vemca_max = 480 *nm/3600;

3 wessr Acceleration limits in the body axis w#x«»
+/- naximum speed change in feet/s/s,
+ sideslip g-limit (not curreatly used),
negative g-limit (pos&tivc number is OK if < 1 g),
bank angle limit in Qagrees,
roll rate limit in degreen/s,
and bank angle acceleration limit in degrees/s/s.

[ X & X X
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accel_limits = [ O 0 ces % =+ speed accel limits
. 0 % side slip limit

0.75*gravity 2.0*gravity ... $ min and max g licits
30*deg2rad eee S max bank angle
8*deg2rad}; % max roll accel

- L wweaad DIARY DOINGS DOWN HERE #asnw
if Rcd == True
disp([10 10 'FProm vunsim.m: ' 10}]):
disp({'CM initial poeiticn = ' sprintf('s8.3f',Xem(1)) ° ' e
lPx‘iﬂtf("&;:’f',XCﬁ(Z)) ! ' cee '
sprintf{' %8.3t’',Xem(3)) ' ' nprintt('ts 3f',Xem(4;)1):
' sprintf('s8.3f',Xem(5)) °

aisp((’
sprintf('%8.3£',Xcm(6)) * ' sprintf('s3.3£',Xcm(7)) ' e
sprintf('88.3f\n’,Xcm{8)) 1)+

disp(['CMMCA initial position = ' sprintf('s8.3f',Xcmeca(l)) ' ' eee
sprintf('s8.3£f',Xcmza(2)) ° ' sprintf('s8.3£',Xcmca(3)) * ' eee
sprintf('%8.3f' ,Xcmea(4))]) s

disp([’ ' sprintf('s8.3f',Xcmca(s5)) * ' eee
sprintf('s8.3f£',Xcmca(6)) °* ' sprintf('s8.3f',Xcaca(7)) ' e

sprintf('s8.3f\n’',Xcmca(8))]);

disp(['tstart = ' sprintf('%$8.3£',tstart)]);
disp({'tfinal = ' sprintf('s8.3f',tfinal)});
disp([{'tol = ' sprintf{('%8.3e',tol)]);
dilp(['minstop - ' sprintf('s8.3e',minstep)]);

. disp([‘'maxstap = ' sprintf('sé.3e',maxstap)));
disp({'max data pts = ' sprintf(°'$8.3f',max_data pts)]) ;
al=accel lImits;

J disp(('Alrspeed chance limito = ' gprintf(' ¥8.3f $8.32' ...
4 ,al(l),al(2)) ' feet/s/n']);
v disp({'3idesiip g-limit - ' e
- sprintf (' a8.3f',al(3)/gravity) ° q"l']);
disp({‘'Minimum/maximum g~limits cee

sprintf(* %8.3¢ ]/ 5. 32',a1(4)/qtavity,al(?)/gravity) 't ogt's'])y
disp({‘'Bank angle and bank accel limit = * ,,.
sprintf(’ 8.3f degs 35.3%',al(5)*180/pi,al(6)*180/pi) ...
' degrees/s/s']);
diep(['CMMCA airspeed limita: min A/S = ' ...
sprintf(' $3.0f kts (%7.3f feet/sec)',vcmca min*36C0/nu,verca_min) ...

10 ° max A/S = *

sprintt (' $3.0t kts (\7.3f ’ect/-ec)',vcmca'mux*3600/nm,vcmca max)]),
diary off; ‘
end
return;
\
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x = [x]1 x2 x3 x4
: x1
x2
x3
x4
x5
x6
x?
=8

u = ful u2 u3d u4g)

OOOOOO"OO#O0.00000&OO'O‘

. T

x5 x6 x7 x8]
= x position
= y pusition
= g poalition
= bank angle
= x velocity
= y velocity
= g2 velocity
-

CMCASYS8.M
1 Dec 92
D. Caughlin

M File to initielize thas cmmca system matrices

Variables Acmca, Bcmca are the basic system matrices
Ccmca, Dcweca are the output matricec

bank angle rate

3

ul = x acceleration
u2 = y acceleration
u3 = g acceleration
ud4 = roll acceleration

Jlobal Acmca Bemca Cemca Demca

w = 2
Acmca = .,
[ O o 0 o 1. 0
0 (v} 0 (o] (o] 1
(o} o} (o] (o] 0 (s}
] o o 0 0 (o]
0 0 L] 0 0 0
(o] ) (o} -0 0 o}
0 o] - 0 0 0 (¢}
0 7] (o] 0 0 0
Bemca = ...
[0 (o] 1] 0;
0 (o] 0 0
0 0 0 0;
o 0 0 0;
1 0 0 ('}
0 1 0 03
0 0 1 0;
0 0 0 wls
Cemca = .,
(1 o) (] 0 0 (o]
0 1 ] 0 ] 0
(] 0 1 0 0 4]
0 ] 0 1 0 0
0 0 0 ] 1 0
0 0 (o] (o] ] 1
] (o] 0 0 0 (]
] 0 (+] 0 0 0

S w is really the parameter “omega"

[ X-N-Y-N-T NN
(=]
-

0
0
0
0 0
0
0
1
0
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Demca = ...

(o 0 - 0 0;
0 0 0;

(1] 0 0 0;

(o] 0 -0 0;

0 0 0 0;

0 0 0 0;

0 0 0 0;

0 0 0 01;

if Rcd == True

s - ! n’
disp((10 10 'From cmcasys.m: ' 10])
disp({10 'Acmca = '10 '
for 1 = 1:8

disp([sp sprintf('A5.2f°,Acmca(l,1)) sp sprintf€('s5.2f',Acmca(l,2)) sp
sprintf('s5.2f',Acmca(l,3)) sp sprintf('85.2£' ,Acmca(l,4)) 8p ...
sprintf('s5.2f',Acmca(l,5)) sp sprintf(°'s5.2£' ,Acmca(l,6)) sp ...
sprintf('s5.2£',Acmca(l, 7)) sp sprintf(°'s5.2f',Acmca(l,8))]))

end;
disp([10 ‘'Bemca = *'10° '1
for 1 = 1:8

disp(([sp sprintf('s5.2f',Bemca(l,1)) sp sprintf('s5.2f¢',Bcmeca(l,2)) op
sprintf('s5.2f',Bcmca(l,3)) ep sprintf('s5.2f',Bcmca(l,4))]))

end;
disp([{10 ’'Ccmca = ‘10 ')
for 1 = 1:8

disp(([sp sprintf('s5.2f',Comca(l,1)) sp sprintf('s5.2£',Ccmca(l,2)) sp
sprintf('s5.2f',Ccmca(l,3)) sp sprintf('85.2¢',Ccmca(l,4)) sp ...
sprintf('s5.2f£',Cemca(l,5)) sp sprintf(°'s5.22',Ccmea(i,6)) Sp «..
wprintf('s5.2f£°,Ccmca(l,7)) sp sprintf('85.2£',Ccmca(l,8))})

end; 4
disp([10 'Dcmca = *10 ! ']
for 1 = 1:8

diep([sp sprintf('s5.2f£',Dcmca(l, 1)) sp sprintf('s5.2f£°',Dcmeca(l,2)) sp
sprintf('s5.22',Dcmea(l,3)) sp sprintf('s5.2£°',Dcmeca(l,4))])

end; :

end ’

return
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CMSYS.M

L
] "1l Dec 92
] v D. Caughlin
§ M Pile to initialize the cruise miselile system matrices .
S
L 3 variables Acm, Bcm are the basic system matrices
L ] Ccm, Dem are the output matiices
S
S T
$ x = [x]1 x2 x3 x4 x5 x6 x7 x8]
b ] xl = x peaition
s x2 = y position
% x3 = g position
] x4 = bank angle
] x5 = x velocity
S x6 = y velocity
S x7 = g velocity
) x8 = bank angle rate
Y
3 T
$ u = [ul u2 u3d u4j
] ul = x acceleration
] u2 = y acceleration
] u3 = z acceleration
] ud4 = roll acceleration
$ NOTE: the roll rate wust be changed
w= .1,
global Acm Bem Com Dem
Acm={0 0 0 0 1 0 O Oy
0000010 0;
0000GO010;
0000000 1;
0000000 O;
0000000 O
0000000 O0;
0000000 -w};
Bem=[{0 0 O O;
0000;
0000;
0000;
1000;
0100;
001 0;
000 w);
Ccrm({1 0 000 0 0 O;
0100000 0;
0010000 0;
0001000 0;
0000100 0;
0000010 0;
0000001 0;
00000001);
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Dem={

20000000
00000000
00000000
O
~

if Rcd == True

m ! l,

. .
disp([10 10 'From cmsys.m:

disp({10 'Acm =
for 1 = 1:8

disp([ep sprintf('s5.2£',Acm(1,1))
sprintf('s5.2f€' ,Acm(1,3)) wp
sprintf('s5.2£',Acm(1,5)) sp
sprintf('s5.2£',Acm(1,7)) sp

end;
disp({10 'Bcm =
for 1 = 1:8

|1°l

. 10 A

‘010}])

']

1))

sp sprintf(*'s5.2f',Acm(1,2))
sprintf('s5.2f',Ac(1,4)) sp
sprintf('%5.2f€',Acm(1,6)) sp
sprintf(°'35.2£',Acm(1,8))])

disp((sp sprintf('s5.2£',Bcm(l,1)) sp sprintf('s5.2£°,Bom(

sprintf('s5.2f',Bcm(1,3)) sp aprlntf('lS.Zf',ch(l,‘ )

end;
disp({10 'Com =
for 1 = 118

disp([sp sprintf('s5.2f',Ccm(1l,1)) sp
sprintf('s5.2£',Cem(1,3)) sp sprintf(°'s5.2f"
sprincf(*85.2£',Com(1,5)) sp sprintf(*'8&.2£',Com(1,6)) ®sp

l10l

'n

1
)

14

2))
1)

sprintf(°'85.2£',Com(1,2))

Ccm(l,4)) sp

sprintf('e85.2f°,Cem(1,7)) sp sprintf(°'s5.2¢£',Ccm(1,8))])

end;
disp([10 'Dem =
for 1 = 1:8

disp({ep eprintf('a5.2f',Dcm(l,1)) sp sprintt

'10'

'

('85.22°,Dem(

sprintf('s5.2£',Dem(l,3)) sp sprintf('85.2f°',Dcm(l, 4

end;
end; 8§ if Rcd == True

return
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SIMGAIN.M
‘ 1 Dec 92
D. Caughlin
revieed
9 Jan 93
Randy Nelson

M File used to compute the Steady State LQG regulator gains

Uses Acmca,Bcmca,Bemea,Demca from the workplace -~ 8 state system

x =
xl = x position
x2 = y position
x3 = z poeition
x4 = bank angle
x5 = x velocity
®6 = y velocity
x7 = z velocity
x8 = bank angle rate

ul = x acceleration
u2 = y acceleration

u3d = g acceleration

ud4 = roll acceleration

Uses weighting functions Q & R from thig file

Design an LQG regulator

NOTE: LQRD() will not work with this structure
Reformulate the system matrices into

N

xl = x position : :
x2 = x velocity _

%3 = y position

x4 = y velocaity

xS = g position o

x6 = 2 velocity

x7 = bank angle

x8 = bank angle rate

LA & KX X K I E I I W R OOO'OOOOOOOOOOOOOOQ""OO'O

/\

Acmcal = Acmca((1 52 6 3 7 4 8),:);
Acmcal = Acmcal(:,[1 52 6 3 7 4 8));

Bcemeal = Bemea([l 52 6 3 7 4 8),3)¢

Qe s=1({100 O

[=X-X-}

0

o
[~ JoRef-F-F.¥Y.¥]

0
0
0
Y
0
0
0
0

0000000
000000 O
[~ X-XeN-T-TT¥.
[~ XX X.)
ouroooooo
o
e

o n
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Rc = |

[Kec,8c] = lqrd(Acmcal,Bcmesal,Qc,Re,SampleTime);

]
S Reset control and Ricatti solution for original states

s
Kc = Ke(s,{1 357 246 8));

8c = 8c{s,{1 357246 8));
8c = 8c([1 357246 8),:);

clear Acmcal lcmcal S clean up the workspace
if Rcd == True
'.p-v ]
disp({10 10 'From simgain.m: ' 10])
disp([10 'Qc = *t 10 ' N
for 1 = 1:8
disp((sp sprintf(°'s5.2f',Qc(1,1)) sp spointf('s5.2£',Qc(1,2)) 8p ...
sprintf(°85.2£',Qc(1,3)) sp sprintf('s5.2f°',0c(l,4)) 8p ...
sprintf(°85.2f',Qc(1,5)) sp sprintf('85.2£',Qc(1,6)) 8P ...
, sprintf('s5.2£',Qc(1,7)) sp sprintf('s5.2£',0c(1,8))1])
end;
disp({10 'Rc = t10 '1)
for 1 = 1:4
disp((sp sprintf('s5.2£°',Rc(1l,1)) sp sprintf(*%5.2f',Rc{1,2)) 8p ...
4 sprintf(°'s5.2f' ,Re(1,3)) sp sprintf('s5.2£',Rc(l,4))]))
end;
aisp(* ') '
disp(’ IQG Regulator Design with restructured system matrices:')
aisp(' ')
disp(’ : ')
disp(’ (X,8) = lqrd(Acmcal,Bcomcal,Qc,Rc) § Computing the regulator gain K')
diep(’ ' $ and soln to Ricatti egqn 8')
aisp(’ ')
disp({10 'Kc = * 10 ¢ 1)
for 1 = 1:4

disp({sp sprintf('s5.2f',Kc(l,1)) sp sprintf('s5.2£',Kc(1l,2)) sp ...
sprintf('85.2f',Kc(1,3)) sp sprintf('n5.2£',Kc(l,4)) sp ...
sprintf(’'85.2f' ,Kc(1,5)) sp sprintf('85.2£',Kc(1,6)) 8p ...
sprintf('s5.2£',Kc(1,7)) sp sprintf('s5.2£',Kc(1,8))]))

end;
disp([10 'Sc = 't10 ')
for 1 = 1:8
disp({sp sprintf(°'85.2£',8c(1,1)) sp sprintf('s5.2f£',8¢c(1,2)) »p ...
sprintf('85.2£',8c(1,3)) sp sprintf('$5.2£°,8c(1,4)) 8P ...
sprintf('$5.2f',8¢(1,5)) sp sprintf('s5.2£',8c(1,6)) 8P ...
q sprintf('35.2£',8c(1,7)) sp sprintf('s5.2£',9¢(1,8)))) ;
end;
end; 8 {f Rcd s= True ‘

return;
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Appendix D: Matlab M-files Called by the Simulation
This appendix contains the listings for all the M-files used
- during the actual run of the simulation. See Appendix C for more

details on Matlab.

function inert = body2inert(u) ‘ ’ : ﬂ
L} . BODY2INERT.M :
] 22 Nov 92

] . Randy Neleon

% This accepts a 6 x 1 vector as inputs

S The body controls (accelerations), a 3 x 1 vector,
. % and the three euler angles (psi, theta and phi).
/ L]
- S Output is the inertial axis accelerations (3 x 1 vector)

psi = u(4d);

theta = u(5);

phi = u(6);

§ ERRARRRRARRRANE RN Compute transformation matrix D

'/// , D = zeros(3,3); S speeds up memory allocation a bit
D(1,1) = cos(theta)*coa(psi);
D{1,2) = cos(theta)*sin(psi);

(22 2211222211

D(1,3) = -sin(theta);

D(2,1) = sin(phi)*sin(theta)*cos(psi) - cos(phi)*sin(psi);
D(2,2) = sin(phi)*ein(theta)*sin(pei) + cos(phi)*cos(psi);
D(2,3) = sin(phi)*cos(theta);

D(3,1) = cos(phi)*sin(theta)*cos(psi) + sin(phi)*sin(psi);
D(3,2) = cos(phi)*sin(theta)*asin(psi) ~ sin{phi)*cos(psi);
D(3,3) = cos(phi)*cos(theta);

\ inert = D'*[u(l) u(2) u(3)}';
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function [next_hdg,next azi} = ...
cm _next(t_next,cmmca_state,cmmca_hdg)
CM_NEXT.M
23 Jan 93
Rancy Nelson

Computes CM heading and azimuth at future time

Inputs: the future time (t_next),
the current CMMCA state (for inertial position), an 8 x 1 wvectur,

and the current CMMCA heading (cmmca hdg)
Uses: matrix of CM headings and positIons (cm_hpb).

Output: CM heading and azimuth from CMMCA present position
to the CM's future position

(XX X EY W N R g ey

% matrix is in one second intervals
t_next = rourd(min(t_next,langth(cm hpb))); & & stay within simulation time

next_hdg = cm hpdb(t_next,1); $ CM heading at t next
next pos = cm _hpb(t_next,2:3)'+Xem(1:2); s inertial CM position at t_next

S convert CM future position relative to CMMCA present position to an aszimuth

§ NARANNRRARRAARRANR Compute transformation matrix d swesassdndan
§ derived from D with theta = 0 & phi = 0
d = geros(2,2); % allocate space to speed things up

d(1,1) = cos(cmmca_hdg);
d(1,2) = sin(cmmca_hdg);
AD(1,3) = Oy
d(2,1) = -sin(cmmca hdg);
d(2,2) = cos(cmmca_hdg);
sD(2,3) = 0;
$D(3,1) = Oy
sD(3,2) = 0;
sD(3,3) = 1;

§ transform to body axis
rel pos = next pos - cmmca_state(l:2); $ CMMCA current to CM future position
body pos = d * rel pos;

$ Compute azimuth
next_azi = atan2(body_pos(2),body pos(1)); S next_azi in {-pi,pi)

return; |
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function phicmd = cmdbank(u)
% 'CMDE2NK. M

N ‘ 4 Dec 92

] ‘ Randy Nelson
S This accepts two column vectors as input:

S the suler angles psi, theta, and phi (yaw, pitch and bank)

S and the inertial controls x, y and z (and phi, but not used).

L}

% Output is the commanded bank angle phicmd.

pei = u(l);
theta = u(2);
phi = u(3);

§ PRARANREERRNRRR NN Compute transformation matrix D WERRERAERRAR

D = zeros(3,3); % speeds up memory allocation a bit

cos(theta)*coa(psi);

D(1,1) =

D(1,2) = cos(theta)*sin(psi);

D{(1,3) = -sin(thata);

D(2,1) = sin(phi)*sin(theta)*cos(psi) - cos{phi)*sin(psi);
D(2,2) = sin(phi)*sin(theta)*sin(psi) + cos(phi)*cos(psl);
D(2,3) = sin(phi)*cos(theta);

D(3,1) = cos(phi)*sin(thata)*cos(psi) + sin(phi)*sin(psi);
D(3,2) = cos(phi)*sin(theta)+*sin(psi) - sin(phi)*cos(psi);
D(3,3) = cos(phi)*cos(thata);

§  wnanaasskrsdasrar  Trangform inertial accel's to body #haarartenes

Lb = D*[u(4) u(5) u(b6)]'; % 3 x 1 vector of body accel's

§ ##se» Compute commanded bank angle *#*s»

S make sure tiny values don't

if (abs(Lb(2)) < le~-l1)
8 confuse the issue

Lb(2) = 0;
end; &% if (abs(Lb(2)) < le-1)
if (abs(Lb(3)) < le-1)
Lb(3) = O;
end; 8§ if (abs(Lb(3)) < le-1)
§ commanded bank angle in body axis

phihody = atan2(Lb(2), =Lb(3)):
phicmd = phi + phibedy; % add to CMMCA bank to get net

if (phicmd < -pi) :
phicmd = phiemd + 2%pi; $ make sure angle in [~pi,pi]

elseif (phicmd > pi)
phicmd = phicmd - 2+pi;
end; 8 if (phicmd < ~pi)

return;
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function angles = eularang(u)
L
%
s
s
%
L}
L
L}
3
]
L
8
)
L

vemca = norm(u(5:7)) + 1

EULERANG.M
15 Dec 92
.Randy Nelson

This accepts an 8 x 1 column vector as input; the state vector
in the inertial coordinate F.O.R.
{(x,Y,z and phi, and their derivatives).

Oucput is the euler angles psi, theta, and phi (yaw, pitch and bank).
Limits on angles:
=180 <= pgi <= +180
=90 <= theta <= +90
~180 <= phi <= +180

$ add 1 so velocity is never zero

P RRRAARARRRRRRAANRNR RN AW Compute yaw angle psi #waswesssnan
R same as heading since inertial X is North.

psi = pi/z -~ atan2(u(5),u{6)); W 4-guad arctan({vy/vx)
i pei <

psi = pli + 2*pi;
if debugg == 1, pai-pni'lSO/pi, end;
end; Sif psi <

N ARsanRAwRawRRatassRdete  Compute pitch angle theta *esweassanes

%théta = acos(u(7)/vemca) - pi/2;
theta = -asin{u(7)/vemca);

QS RRRRRRAARRNRRANARRA NN Compute bank angle phi #atsawaswwws
phi = u(4); S straight out of CMMCA state vector
anyles = {pai theta phi);

return;
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db=D¥%di

function out = gimbal(u) » ' . .
‘ ' GIMBAL.X

L3 7 Jan 93
] Randy Nelson
$ Inputs:

$ the CM and the CMMCA state vectors (inertial),

t and the esuler angles (psi, theta and phi).

3

% Output: : .

] the CM and the CHMMCA state vectors (inertisl),

] the euler angles (psi, theta and phi),

] the range from CMMCA to CH and gimbal angles (psi_g, theta g),

§ wwasax  Attach names to inputs *waaR ’

cm_state = u(l:8); ‘

cmmca_state = u(9:16);

psi = u(l7);

theta = u(l8);

phi = u(l9);

§ AN RAARRARLRANAAR ‘Computs transformation matrix D wetneaswtass

D = gzerca(3,3); S speeds up memory allocation a bit

D(1,1) = cos(theta)*coa(psl);
D(1,2) = cos(theta)*asin(psi);

D(1,3) = -sin(theta);

D(2,1) = sin(phi)*sin(theta)*cos(psi) - cos(phi)*sin(psi);

D(2,2) = sin(phi)*sin({theta)*sin(psl) + cos(phi)*cos(psi);

D(2,3) = sin(phi)*cos(theta); :

D(3,1) = cos{phi)*sin(theta)*cos(psl) + sin{phi)*sin(pasi);

D(3,2) = cos(phi)*sin{theta)*sin(psi) = sin(phi)*cos(psi);

D(3,3) = cos{phi)*coa(theta); : .

% inertial vector from CHMMCA to CM

d i = cm_state(l:3)-cmmca_state(1:3); '
$ convert to body axis

§ BRRRRRARAANAARANS c°mput. radar range RRARARANARAN
range = norm(d_i); v

A NNAARRRRNRNRRAANS Compute azimuth (gimbal psi) ***;*ttt*ttit&t

psi_g = atan2(d b(2),d _b(1)); ' s psig in [-pi,pi)

§ SRR RRANEACRNRRNNS Compute pitch (gimbal theta) *teseseanawesss

theta_g = -4asin(d_b(3)/range); -
gim = [range psi_g thata g¢];
out = [cm_state; cmmca state; psi; theta; phi; gim'};

return;
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Ll O,

function ([e_now _azi,s_now hca,s_rng,s_next_azi,s next_hca] = ...
Rrdzs(now_azi,now_hca,rng,next_azl,next_hca); ‘

HRD2S.M
6 Feb 93

This file takes the inputs and maps them into the range [~5,5])
(if out of [-5,5], "s2fuz.m" will treat as if at end of range)

Inputd: current radar azimuth to CM (now azi),
current CM-CMMCA heading crossing angle {now_hca),

current range to CM,
and future values of racar azimuth and HCA (next_azi & next_hca)

Output is the scaled levels for prasent radar aximuth and HCA, range,
and future (at t_ahead) radar azimuth and HCA.

® SOOI IOIPON

ss*et geale the variables ®awnws
w_now azi = (now azi * 5 * 2 / (max right azim-max_ left_azim));
s_now_hca = (now_hca * 5§ / (3*p1/4));
s rng = (rng-Rng nominal) * 5 * 2 / (max_radar rng - min_radar_rng);}
s_next_azi = (next azl # 5 * 2 / (max _right_ azim-max left nzlm));

s_next_hca = (next_ “hca * 5 / pi);

return;
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function [cmd bank,spscd chg] = ...
log_| Sank(now azl, now_hca, rng,next_azi, next hca,cm_phi)

LOG_BANK.M
8 Feb 93
Randy Nelson

Inputs: now_azi, now hca, rng, next_azl, next_hca, cm phi
Uses: CMMCA max bank angle (accel limita(6)), t_ahea
"g2fuz.m"

Outputs: CMMUA bank angle and speed change commanded
for compute the next set point

Given two ssts A and B, and their membership functicns ml and m2,
define union, intersection and complement of the setss

min({ml(x) m2(x)])
max({ml(x) m2(x)])
1 - ml(x)

Intersaection corresponds to "AND:" m(A AND B)
Union corresponds to "OR:" m(A OR B)
Complement correaponds to "NOT:™ m(NOT A)

Output depends on where centroid of logic rules falls in output's fuzzy set.

NARARRERAERN Sets: L2222 2222223

*"A" corresponds to presant radar gimbal azimuth (now azi)

"B" corresponds to preaent CM-to~CMMCA heading crossI1g angle (now_hca)
*C* corresponds to radar rangs (xng)

*D" corresponds to CM bank angle (cm phi)

*E" corresponds to future radaxr gimbal azimuth at t_ahead (nsxt_azi)
"F" corrasponds to future CM-tu-CMMCA HCA at t_ahead (next_hca)

"G" is intwerim bank angle output from now_azi and now_hca
"H" is interim bank angle outpu: from range and CM bank direction

"P" corresponds to output bank at t_now \
Q" corresponds to output bank at t_ “next > to be converted

POPS PP SRS Nes P RRP PR PP RS SOOI N

"R" corresponds to rnet output bank to set point

"8" corresponds to output speed
speed_chg = 0; $ don't implement speed changes
§ =*wtx Make appropriate function calls to eventually get *#aew
] set membership levels for input variables

S Map real variables to scaled integsr values in [~5,5]

{s_now_azi,s_now_hca,s rng,s_next_azi,s_rext hca] = hrd2s ...
(now_ azi,now _hca,rng,next_azi,next _heca);

% Convert scaled values to fuzzy set levels

(ALP,ASP,AZR,ASN,ALN] = s2fuz{s now_azi); % present CM-to-CMMCA HCA
(BLP,BSP,B2R,BSN,BLN) = nzfuz(o na>w hca); % present radar azimuth
[CLP,C8P,CZR,C8N,CLY] = uzfuz(l ng)s S radar range

{BLP,ESP,EZR,ESN,ELN] = s2fuz(a_next_azi), $ future CN-to-CMMCA HCA
[PLP,PSP,FZR,FSH,FLN] = nzfuz(n next hca); % future radar azimuth
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Dro = 0y % CM bank angle

DZIBR = 0;
DNE = Oy
if {em _phi > 0)
DPO = 1;
elseif (cm phi < 0)
DNE = 1;
else
DZR = 1;
end; & if (cm_phi > 0)

\ Define ocutput variables at the center of each trapezoid

Lp = 5;

8p = 2,5;

ZR = O

SN = -2.5;

LN = -5}

% RAERNAENRNNR RULES: [ 2322232322228}

) (23R 2222222 X222 222X X 22222222 22222222 X 2222322 2222222222022 222
] t_now logic for computing bank to next set point bd
| based on *
| 1) radar gimbal azimuth and CM to CMMCA HCA -
) 2) range, CM bank angle direction and CM to CMMCA ECA *
Y 12222222222 22222212 222 222 Rdf3 22202223222 2322 2222222222222 3222222 1322222
G **esv Azimuth and HCA logic for bank #ass

ab bank = {

ALP BLP LP; S la. IZAisLP AND B is L’ THER P is
AL? BSsp LP; S 1b. If A is LP AND B is 8P THEN P is
ALP BZR LP} % lc. If A is LP AND B is 2ZR THEN P is
ALP BSN 8P; $1d. IfAisLP AND B is SN THEN P is
ALP BLN SP; S le. IfAis LP AND B is LN THEN P is
ASP BLP 8P; $2a. IfAis 8P AND B is LP THEN P is
ASP BSP 8P; $ 2b. If A is 8P AND B is 8P THEN P i
ASP BZR S8P; $2c. IfAis 8P AND B is gZR THEN P is
ASP BSN 2R} S 2d. If A is S8P AND B is SN THEN P is
ASP BLN 8N; S 2 IfAis SP AND B is LN THEN P is
AZR BLP 8P; % 3a. IfAis ZR AND B is LP THEN P s
AZR BSP 8P; $ 3b. IfAis IR AND B is 8P THEN P {
AZR BZR 2Ry 9 3c. IfAisZR AND B is ZR THEN P i»
AZR BSN 8N; $ 3d. If A is 2R AND B is 8N THEN P is
AZR BLN 8N; S 3e. IfAis IR AND B is LN THEN P L
ASN BLP 8P S 4a. If A is SN AND B is LP THEN P is
ASN BSP ZR; $4b. If A is SN AND B is 81 THEN P is
ASN BZR SN; S 4c. If A is SN ANC B is ZK THEN P is
ASN BSN 8SN; S 4d. If A is SN MAND B i{s SN THEN P is
ASN BLN 8N S 4e. If A is BN AND B is IN THEN P is
ALy BLP 8Np $ 5a. IfAisLN AND B is LP THEN P is
ALN BSP 8Nj $ 55, IfAis LN AD B is 8P THEN P is
ALN BZIR LN; $ 5¢. IfAis LN AND 5B is 2R THEN P is
ALN BSN LN; $ 5d. IfAis LN AND B is 8N THREN P ls
- ALN BLN LK ] $ 5. IfA sLN AND B is LN "THEN P is
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§ *n*»x  Radar range lcgic for bank #*we
$ need to know which way to turn for closure when CM not turning

S get that info from eign(now_azi):
d = gign(now_azi);

cd_bank = [
CLP LPO LP; % 6a. If C is LP AND D is POS TEEN P is LP
CLP DZR LP*d; $ 6b., If C is LP AND D is ZERO THEN P is 8
CLP DNB LN; % 6¢. If Cis LP AND D is NEG THEN P is LN
CSP PPO 8P; S 7a. If C is S8P AND D is PCS THEEN P is &P
CSP DZE SP*d; $ 7h. If C is SP AND D is ZERO THEN P is 2R
CSP DNE SN; % 7c. T£ C is 8P AND D is NEG THEN P is SN
CZR DPO ZR; % 8a. If C is 2R AND D is POS THEN P is ZR‘
CZR DZB FAWY ] $ 8b. If C is ZR AND D is ZBRO THEN P is 2R
CZR DNBE ZR; $ 8¢c. If Cis 2R AND D is NEG THEN P is ZR
'
i CSN DPO  SN; % 9a. IfCis SN AND D is POS THEN P is BN
a CSN DZE  S8K*d; S Sbh,. If C is SN AND D is ZERO THEN P is 2R
; CSN DNE 8P; S 9. IfCis SN AND D is NEG THEN P is 8P
; CLN DPO LN $ 10a. If 0 is L8 AND D is POS THEN P is LN
i CLN DZE  LN*d; $ 10h, If 2 23 LN BEND D is ZERO THEN P is 8
CLN DNE LP }; $ 10¢c. If C i LN AND D is REG THEN P is LP

s fuzzy logic computations for now _bank components:

$ appand column for logical AND of now az!i and now_hce for bank angle
ab_bank(:,4) = min(ab bank(:,1),ab bank(:,2));

- ab_bank(:,5) = ab_bank(:,3).*ab_bank(:,4);
now_azi hca = lum(ab_bank(:,S))7sum(nb_bank(:,4)); $ scaled value from azimuth

$ append column for logical AND of rng and cm phi for bank angle

cd_bank(:,4) = min(cd rank(:,1),cd _bank(:,2));

cd_bank(:,5) = cd_bank(:,3).*cd_bank(:,4);

rng_cmbank = sum(cd_bank(:,5))/sum({cd _bank({:,4)); S scaled value from range




[ 2322222222232 2222222 222 22X 2t 22202222 22222222 al22 22 222222222222 2232/

]

S now_bank logic to combine fuzzy bank logi: derivud from *

] current azimuth, HCA and range hd

L (2222222222 2222 2022222222 2Rt 2222222222222 232222 222222222 222222 212

% Convert scaled t now output bank values to fuzzy set levels
{GLP,GSP,GZR,GSN,GLN] = #2fuz(now_azi_hca); S present CM-to-CMMCA HCA
[HLP,B8P,HZR,HSN,HLN] = s2fuz(tng cmbank) ; S present radar azimuth
now_bank = {

GLP HLP LP; % 1lla. If G isLP AND H is LP THEN P is LP
GLP HSP LP; S 1llb. If G is LP AND H is SF THEN P is LP
GLP HZR LP; % 1llc. IfGis LP AND H is ZR THEN P is LP
GLP HSN LP; $ 11d. If£ G is LP AND H is SXN THEN P is LP
GLP HLN Lp; % lle. If G fa LP AND H is LN THEN P is LP
GEP HLP LP; % 12a. If G is 8P AND H is LP THEN P is 8P
GSP HSP 8P; $ 12b. If G is 8P AND H is 8P THEN P is 8P
GSP HZIR SP; 8 12¢. If G is SP AND H is ZR THEN P is SP
GSP HSN ZR; $ 12d4. If G is 8P AND H is SN THEN P is 8P
G8P HLK 8N; $ 12e¢. If G is 8P AND H is LN THEN P is ZR
GIR HLP LP; $ 13a. IfGis 2R AND H is LP "THEN P is SP
GZR HSP 8P; $ 13b. If G is ZR AND R is 8P . THEN P is ZR
GZR HZR ZR; $ 13c. If G is ZR AND H is ZR THEN P is ZR
GIZR BESN  8N; § 13d. I£ G is ZR AND B is SN THEN P is 2R
GZR HLN Lid; $ 13e. If£ G is ZR AND H is LN THEN P is 8N
GSN HLP SP; % 14a. If G is SN AND B is iP THEN P is CR
GSN HSP ZRy % 14b. If G is SN AND H is 8P THEN P is 8N
GSN BZR 8N; §$ l4c. If G is B8R AND H is 2R THEN P is 8N
GSN HSN  8N; $ 144. If G is SN AND H 1is 8N THEN P is &N
GSN HLN LN; % ld4e. If G is SN AND H is LN THEN P is SN
GLN HLP LN; $ 15a. If G is LN AND H is LP THEN P is LN
GLN HSP LN; $ 15b. If G is LN AND H is SP THEN P is LN
GLN HZR LN; % 15¢c. If£Gis LN AND H is ZR THEN P is LN
GLN HSKN LN; % 15d. If G is LN AND B 1is SN THEN P is LN
GLN HLN LN ]; $ 15¢. I£ G is LN AND H is LN THEN P is LN

§ **+ fuzsgy logic to combine azimuth, hca and range info for t_now bank #w»

% append column for logical AND of now azi hca and rag cmbank for bank angle
now_bank(:,4) = min(now bank(:,1),now_bank(:,2));

now_bank(:,5) = now bank(:,3).*now_bank(t:,4);

now_bank = sum(now Shnk(:,S))/sum(new bank(:,G)))
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2222322222222 222 d 2222222 22222222 R X2 22222222 22222212}

t_next logic for computing bank to next set point *

bosed on future radar gimbal azimuth end CM to CAMCA HCA »
(2222252 222222 2222222222222 322222232222 2222 28 222 232222222222 32 2} ]

L X X X

8 Coavert scaled next_azi and next hca bank values to fuziy set levels

ef bank = |

RLP FLP SN; % 16a. If B is LP AND F is LP THEN Q is LP
ELP FSP. S8N; % 16b. If E is LP AND P is SP THEN Q is LP
BLP FZR §P; % 16c. If B is LP AND P i3 2R THEN Q is SP
ELP FSN  8P; % 164. IfE is LP AND F is SN THEN @ is ZR
BLP PLN SP; % 16e. If B is LP AND P is LN THEN Q is 2ZR
ESP FL? 8N % 17a. If R is SP AND F is LP THEN Q is LP
BSP PSF  2R; $17b. £ B is SP AND F is SP THEN Q is SP
BSP FZR 2ZR; % 17c. If B 48 SF AND F is ZR THEN Q is ZR
RSP FSN 8 % 17d. If E is SP AND F is SN THEN Q is ZR
ESP FLN 8P; S 17e. If B is SP AND F is LN THEN Q is SN
EZR FLP 8N; % 18a. IZ R is ZR AND F is LP THEN Q is LP
BZR FSP 8N; % 18b. If B is 2R AND F is 8P THEN Q is SP
RZR PZR  ZR; % 18c. IfF B is ZR AND P is ZR THEN Q is 2R
BZR PSN 8P; % 16d. If R is ZR AND P is SN THEN Q is SN
EZR FLN 8P; S'18e. If B is ZR AND P ia LN THEN Q is LN
BESN FLP S8N; % 19a. IfE is SN AND F is LP THEN Q is SP
ESN PSP SN; $19p. IfE is SN AND P is SP THEN Q is ZR
BSN FZR  2ZR; $/19c. If B is SN AND P is ZR THEN Q ir ZR
ESN FPSN  ZIR; % 194. If B is SN AND P is SN THEN G is SN
BSN FLN S8P; S 19s. If B is SN AND F is LN THEN Q is LN
ELN FLP 8SN; %20z, IfBis LN AND P ia LP THEN Q is 2ZR
BLN PSP  SN; S 20b. If E is LN AND P ia SP THEN Q is ZR
ELN FZR 8N; $20c. IfBE is L8N AND F is 2R THER O is SN
ELN FSN  SP; $/20d. If Eis LN AND F is SN THEN Q is LN
BLN FLN 8P )3 $20e. If B is LN AND P is LN THEN Q is LN

|
$ sopénd column for logical AND cof next_azi and next_hca for bank angle
ef bank(3,4) = min(ef bank(:,1l),el bank(:,2));
ef bank(:,5) = ef_bank(:,3).vef_bank(:,4);
next_bank = sum(ef_bank(i,5))/sum(ef_bank(:,4));
{

|
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] logic to combine presant and future bank commands

L ]

G RN AN AR RN AR A AR R AR AR R AN RN R AN AN RN AR AR RS RN AN NANNARNAAAIN AN AR AANAAANANNAR

S Convert scaled present & future cmd'd bank values to fuzzy set levels
% fuzzy bank cmd at t_now

S fuzzy bank cmd at t_next

(PLP, PSP, PZR, PSN,PLN]
[QLP,QSP,QZR,QSN,QLN]

ne: bank = (

PLP QLP LP)
PLP QSP LP)
PLP QZR LP)
PLP QSN LP;
PLP QLN LP;

PSP QLP LP;
PSP QSP 5P;
PSP QIR ZR}
P8P QSN IR)
PSP QLN 8N;

PZR QLP 8P;
PZR QSP 8P;
PZIR QZR - IR;
PIR QSN 8N;
P2R QLN 8KW;

PSN QLP 8Py
PSN Q8P ZR;
PSN QZR ZIR}
PSN QSN  8N;
PSN QLN LN)

PLN QLP LN)
PLN QSP LN;
PLN QZR LN;
PLN QSN LN;
PLN QLN

Pl SPPPIO FPOOISSr Ooves [ X N N X

% append column for logical AKD of now bank and next_bank
net_bank(:,4) = min(net bank(:,1),net_bank(:,2));

net bank(:,5) = net bank(:,3).*net bank(:,4);

“bank mean = sum{net_bank(:,5))7sum(net_bank(:,4});

net”

I

= g2fuz(now bank);

= s2fuz(next_bank);

21a.
21b.
21c¢.
214.
21c.

22a.
22b.
22¢.
224.
22e.

23a.
23b.
23c.
234.
23e.

24a.
24b.
24c.
244.
240,

25a.
25b.
25c¢c.
254d.
25¢.

If
It
1t
It
It

It
1t
It
If
it

If
if
1f
1f
1t

It
17
1f
It
it

1f
1f
b ¢4
1t
1t

WYYNYY WhNNNYY YUY gy ‘WYuN o

is
ie
is
is
is

is
i
is
io
is

53335 BBEEZ B3Iy 33y %

VOCOO0 OO VOO0 POVOO LOOOD

cmd _bank = net_bank mean / 5 * accel limits(6);

return)
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Convert fuzzy set commanded bank value to hard value
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function

PO PP OOIOIOISS

L]
]

[SLP,3SP, 8ZR,88N,SLN] = @2fuz(scaled_levsl)

82FUZ.M
8 Feb S3
Randy Nelson

This file takes a scaled level and determines membership
level in all linguistic sets

Input: scaled level [-5,5] (extra values of t99 on each end

preclude out-of-range problems)

Output is a 5 x 1 vaector of set membership lavels

All non-zero values of "set_members” have membership.

In order "scaled large positve,” "scaled small pocitivo,
"zero,"” "small negative," and "large negative"

| 2]

d

*+* 5 Linguietic sets and 33 scaled levels [-5, 5]

efine sets as trapezoids

index = [-99 -5:5 99);

Linguistic_set = [

$ LN 8N £ZR 8P LP
1 0 0 0 0;
1 0 0 0 0; ]
1l 0 0 0 0; ]
0 1 0 0 0; .
o 1 0 0 0; ]
(o] o 1 o 0 )
0 0 1 0 0; %
1] 0 1 0 0; L
0 0 0 1 0 ]
0 0 (3] 1 0; ]
0 0 0 0 1; :
(o] 0 0 0 1; ]
0 0 o 0 1)

tab = [index' Linguistic_get]

out = tablel(tab,scaled level);

SLN = out({l);

£8N = out(2);

8ZR = out(3);

88P = out(4d);

SLP = out(5);

return;

H

whhhR

§ scaled "universe of discourse®

Scaled level
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function Lout = sat_xyz(u)
SAT Xi{Z.M

9 Jan 93
Randy Nelson

Input: a 7 x 1 column vector
The four inertial controle (accelerations)
{phi acceleration is not used),
and the euler angles (psi, theta and phi),

Uses accel limits from "runsim.m,” a 1 x 8 vector.

Outrput: a 3 x 1 vector:
The body x, y and z axis accelerations, limited.

[ A X X XN N REEEFY.

psi = u(S);
theta = u(6);
phi = u(7);

gero_tol = 1.0e-4; % used towarda end of file when scaling accel
if 0O 8 not implemented, but available if needed
if abs(psi) < zero_tol
psi = 0;
end; § it abe(psi) < zero_tol
Af abs(theta) < zero_tol
theta = 0;
end; 8§ if abs(theta) < zero_tol
if abs(phi) < zero_tol

phi = 0;
end; % Lt abs(phi) < zero_tol
end; % if 0
L L 223322222222 202 2] ccmputg tr.n.formation matrix D RARNRARRRAENR
D = geros(3,3)) § speeds up memory allocation a bit
D(1,1) = cos(theta)*cos(psi); )
D(1,2) = cos(theta)*sin(psi);
D(1,3) = -agin(theta);
D(2,1) = sin(phi)*sin(theta)*cos(psi) - cos(phi})*sin(pei);
D(2,2) = sin(phi)*sin(theta)*sin(psi) + cos(phi)*cos(psi);
D(2,3) = sin(phi)*cos(theta);
D(3,1) = cos(phi)*sin(theta)*cos(psi) + sin/phi)*sin(psi); |
D(3,2) = cos(phi)*sin(theta)*sin(psi) ~ sin(phi)*cos(psi); :
D(3,3) = cos{phi)*cos(theta); !
Lb = D * u(1:3); S convert inertial accsl's to body !
251' n;go 0 gravity}'; » § convert inertial gravity to bedy i
- }

§ sennnnnnns  1imit X accel SetkananwR
Lower = max([accel limits(l) (vemca_min-vemeca))):
Upper = min([accel limits(2) (vcmea i _max-vemea)]);

if (Lb(1l) > Upper) $ X limited by throttle

Lb(l) = Upper;

elseif (Lb(1l) < Lower)

Lb(l) = Lower;

end; 8 if (Lb(l) > Upper)
if (Cpper < Lower)

Lb(1l) = min((Lower Upperl});
end; § if (Upper < Lower)
ILbout(l) = Gb{1l) + Lb(1l);

$ X further affected by gravity
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§ manvewknrx  Jimit 2 accél (2222222277
if (phi=Lbl(2) > 0) % rescale commandad control

Lb(3) = Lb(3)*Gb(2)/Lb(2);
elseif (phi*Lbl(2) < 0) " % banked in wrong direction

Lb(3) = (~gravity + u(3))/cos(phi) + Gb(3);
end; 8 if (phi*lbl(2) > 0) -

Lb(3) = ~-Gb(3) + Lb(3); $ 2 due to gravity and backpressure
if (Lb(3) < ~accel limitse(5)) % don't over-g

Lb(3) = ~accel_lImits(5);

elseif (Lb(3) > -accel _limits(4)) % don't under=-g

Lb(3) = ~accel 11m1ts(4);
end) 8 if (Lb(3) < -accel _limite(5))

§ txnwnnndad 1imit Y accel Aravesmvaw
Lb(2) = 0;

% can go at top of function w/rsturn, do it here to get debug output
if (abs(Lbi(2)) < zero_tol) & (abs(Lbl(3)) < zero_tol)
g_s = 1/cos(phi);

Lout = D'*{Lbout(1l) Lb(2) ~gravity*q s]';
Sdisp('herel’')

else

Lout = D'#[Lbout(l) Lb(2) Lb(3)])'s

g_s = -Lb(3)/gravity;

sdisp('hera2')

end; & if (Lbl(2) == 0) & (Lbl(3) == 0)
Lout(3) = Lout(3) + gravity;

| return;
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function setp = set_pt(u)

SRT PT.M
24 Jan 93
Randy Nelson

Uses fuzzy logic to compute set point in CMMCA body axis
Puzzy logic provides a recommended CMMCA bank angle and speed change
This info ias used to determine where the CMMCA would be at the
next time interval assuming it was at the desired bank throughout
and the airspeed was changed (once) by the desired amount

Inputs: a 23 x 1 vector of CM & CMMCA states,
euler angles, radar range and gimbal angles,
and current time (t now)
Uses: CMMCA desired BPank angle and speed change from "log _tab.m,"
fuzey time (ftut,t_reset,t_ahead) from "time fuz.m,"
™ next (for next azl, next _hca)

Outputs: CMMCA set point in inertial space (8 x 1 vector)

XXX XX EEREEEFEEEREWF PP

§ »»axx  Attach names to inputs #*zes
c¢m_state = u(l:8)y

cmmca state = u(%9:16);

psi = u(l7);

theta = u(ls);

phi = u(l9);

rng = 1(20);

gim psi = u{21);

qim thets = u(22);
_now = u(23);

if isempty(sim start tims) " % use Matlab's clock to figure
sim start_ time = cYock: % elapsed time of simulation

end

if ¢t now > tfinal - .25
sim_. run_tim = etime(clock,sim start _time)

end

§ #nnsanssr A COUPLE OF CONTINGENCIBS BEFORE FINDING NEXT SET POINT ®#wusdisn

8 wweaw  gkip fuzzy logic and revert to "refpos.M" wiawnww

if (fuz_enable == ~-1)
setp = refpos([cm_state; cmmca_state)); \

return; |
end; % if (fuz_enable == -1) |

§ *awav don't recompute set point if time < reset time weewe

if (t_now < t_reset) S t reset = 0 initially, so this is lkipped
setp = [setpoint(1:3); cmmca atato(4x8)]:
setpoint = metp; % set the global variable to just compuéod value
return;

end; % if (t_now < t_reset)
§ *wxsr  recompute set point if time >« reset time wawww

] or if time = tatart
§ **¢ get new set of furry times from matrix #w«
time_index = l4round(t_now/start_step); % index into row of fuzzy t

dolta ftut = fuzgy tim.(timo index,1);
ftut = ftut + delta _ftut;
t_reset = t reset + tuzzy time(time_index,2);
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8§ get CM bank, hsading and heading crossing angle
t_round = l+round(t_ncw);
cm bank = cm hpb(t_round,4);
cm_hdg = cm_hpb(t_round, 1))
delta hdg = rem(2%pi + cm_hdg - psi 2%pi);
if delta hdg > pi
delta hdg = delta_hdg - 2 * pi;
end; % if Jdelta hdg > pi

8 get future cm heading and heading crossing angle

{next hdg,next_agi] = ...
cm_next(t_now + t_ahead,cmmca_state,psi);

S future HCA based on future CM heading and present CMMCA heading

next_hca = rem(2*pi + next_hdg - psi,2*pi);

if next hca > pi S in range [-180,180]
next_hca = next_hca - 2 * pi;

end; ¥ if next_hca > pi

§ *w#2% compute tha set point in the body axes #wawww
[cmmca_bank,cmmca_spesd) = ...

“log _bank(gim pei,delta hdg,rng,next_azi,next_hca,cm bank);

vel = norm(cmmca state{5:7)); © % Compute CMIMCA speed
vel = vel + cmmca_speed; $ and incorporate change

if comca_bank == 0
body_: Xy = {vel*delta ftut O0);

else
kl = vel“2/(gravity*tan(cmmca_bank));
= (gravity*delta ftut*tan(cmmca_bank))/vel;
body Xy = k1 * [sin(kZ) 1-cos(k2)7;
end; § if cmmca bank ==

§ s»e*x transform into the (body centered) inertial 8xas *hhtR

inert = body2inert({body xy O psi 0 0]); $ ref'd to zero pitch & bank

§ ®sx** convert to the (true origin) inertial axes *swes
xyz = inert + cmmca_state(l:13);

setp = [xyz; cmmca_state(4:18)),
setpoint = setp;

return;
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$ index into row of cm hpb

$ from matrix of values

% in range [-180,180])

S set the global variablé to just computed value
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